Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polymerization of silanes through dehydrogenative Si–Si bond formation on metal surfaces


Element–element double bonds of group 14 elements can be formed in solution, but generally only by applying harsh reductive conditions using sterically highly shielded tetryl halides as precursors. The two-dimensional confinement in surface-assisted polymerization represents a valuable alternative to access such reactive compounds, as it allows shielding of the labile entities without requiring bulky residues and catalytic activation of the reactive groups. Here, we demonstrate Si–Si bond formation in on-surface chemistry. Polymerization upon multiple Si–H bond dissociation and subsequent Si–Si bond formation was achieved on Au(111) and Cu(111) surfaces by using two different monomers, each containing two silicon functional groups (CH3SiH2 or SiH3) attached to an aromatic backbone, leading to polymeric disilenes that interact with the surface. A combination of experimental and theoretical studies corroborates the formation of covalent Si–Si bonds between the long, highly ordered polymer chains with high diastereoselectivity. The reactive Si=Si bonds formally generated via double dehydrogenative coupling are stabilized via covalent Si–surface interaction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: General reaction scheme of the on-surface reactivity of biphenylsilanes on the Cu(111) and Au(111) surfaces.
Fig. 2: On-surface reaction of AMS 2 on the Au(111) surface.
Fig. 3: On-surface reaction of AMS 2 on the Cu(111) surface.
Fig. 4: XPS spectra of the Si 2p core levels of AMS deposited on the Cu(111) surface.
Fig. 5: On-surface reaction of BDS 3 on the Cu(111) surface.
Fig. 6: Energy profile of the proposed polymerization of model silane M on the Cu(111) surface.

Data availability

Supplementary Information is available in the online version of the paper. Reprints and permissions information is available online at Data supporting the findings of this work are available within this paper or its Supplementary Information and also from all corresponding authors upon reasonable request. Converged adsorption geometries of all investigated structures can be found in a separate .zip file.


  1. 1.

    West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214, 1343–1344 (1981).

    CAS  PubMed  Google Scholar 

  2. 2.

    Masamune, S., Murakami, S., Snow, J. T., Tobita, H. & Williams, D. J. Molecular structure of tetrakis(2,6-diethylphenyl)disilene. Organometallics 3, 333–334 (1984).

    CAS  Google Scholar 

  3. 3.

    Kira, M., Maruyama, T., Kabuto, C., Ebata, K. & Sakurai, H. Stable tetrakis(trialkylsilyl)disilenes; synthesis, X-ray structures, and UV/VIS spectra. Angew. Chem. Int. Ed. 33, 1489–1491 (1994).

    Google Scholar 

  4. 4.

    Tokitoh, N., Suzuki, H., Okazaki, R. & Ogawa, K. Synthesis, structure, and reactivity of extremely hindered disilenes: the first example of thermal dissociation of a disilene into a silylene. J. Am. Chem. Soc. 115, 10428–10429 (1993).

    CAS  Google Scholar 

  5. 5.

    Weidenbruch, M. Silylenes and disilenes: examples of low coordinated silicon compounds. Coord. Chem. Rev. 130, 275–300 (1994).

    CAS  Google Scholar 

  6. 6.

    Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Gille, M., Grill, L. & Hecht, S. Bottom-up zu molekularen nanostrukturen. Nachr. Chem. 60, 986–990 (2012).

    CAS  Google Scholar 

  8. 8.

    Held, P. A., Fuchs, H. & Studer, A. Covalent-bond formation via on-surface chemistry. Chem. Eur. J. 23, 5874–5892 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Wang, T. & Zhu, J. Confined on-surface organic synthesis: strategies and mechanisms. Surf. Sci. Rep. 74, 97–140 (2019).

    CAS  Google Scholar 

  10. 10.

    Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    CAS  PubMed  Google Scholar 

  12. 12.

    Pigot, M. & Dumur, F. Molecular engineering in 2D surface covalent organic frameworks: towards next generation of molecular tectons - a mini review. Synth. Met. 260, 116265 (2020).

    CAS  Google Scholar 

  13. 13.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    CAS  PubMed  Google Scholar 

  14. 14.

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  15. 15.

    Shekhirev, M., Zahl, P. & Sinitskii, A. Phenyl functionalization of atomically precise graphene nanoribbons for engineering interribbon interactions and graphene nanopores. ACS Nano 12, 8662–8669 (2018).

    CAS  PubMed  Google Scholar 

  16. 16.

    Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Sun, K. et al. Surface-assisted alkane polymerization: investigation on structure–reactivity relationship. J. Am. Chem. Soc. 140, 4820–4825 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Zhang, X. et al. Coordination-controlled C–C coupling products via ortho-site C–H activation. ACS Nano 13, 1385–1393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rogers, C. et al. Closing the nanographene gap: Surface‐assisted synthesis of peripentacene from 6,6′‐bipentacene precursors. Angew. Chem. Int. Ed. 54, 15143–15146 (2015).

    CAS  Google Scholar 

  20. 20.

    Gao, H.-Y. et al. Glaser coupling at metal surfaces. Angew. Chem. Int. Ed. 52, 4024–4028 (2013).

    CAS  Google Scholar 

  21. 21.

    Sun, Q., Zhang, C., Kong, H., Tan, Q. & Xu, W. On-surface aryl–aryl coupling via selective C–H activation. Chem. Commun. 50, 11825–11828 (2014).

    CAS  Google Scholar 

  22. 22.

    Wiengarten, A. et al. Surface-assisted dehydrogenative homocoupling of porphine molecules. J. Am. Chem. Soc. 136, 9346–9354 (2014).

    CAS  PubMed  Google Scholar 

  23. 23.

    Sun, Q. et al. On-surface formation of two-dimensional polymer via direct C–H activation of metal phthalocyanine. Chem. Commun. 51, 2836–2839 (2015).

    CAS  Google Scholar 

  24. 24.

    Basagni, A. et al. Stereoselective photopolymerization of tetraphenylporphyrin derivatives on Ag(110) at the sub-monolayer level. Chem. Eur. J. 20, 14296–14304 (2014).

    CAS  PubMed  Google Scholar 

  25. 25.

    Matena, M. et al. On-surface synthesis of a two-dimensional porous coordination network: Unraveling adsorbate interactions. Phys. Rev. B 90, 125408 (2014).

    Google Scholar 

  26. 26.

    del Árbol, N. R. et al. On-surface bottom-up synthesis of azine derivatives displaying strong acceptor behavior. Angew. Chem. Int. Ed. 57, 8582–8586 (2018).

    Google Scholar 

  27. 27.

    Held, P. A. et al. On-surface domino reactions: Glaser coupling and dehydrogenative coupling of a biscarboxylic acid to form polymeric bisacylperoxides. Angew. Chem. Int. Ed. 55, 9777–9782 (2016).

    CAS  Google Scholar 

  28. 28.

    Gao, H. et al. Intermolecular on-surface σ-bond metathesis. J. Am. Chem. Soc. 139, 7012–7019 (2017).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang, L. et al. On-surface activation of trimethylsilyl-terminated alkynes on coinage metal surfaces. ChemPhysChem 20, 2382–2393 (2019).

    CAS  PubMed  Google Scholar 

  31. 31.

    Ekström, U., Ottosson, H. O. & Norman, P. Characterization of the chemisorption of methylsilane on a Au(111) surface from the silicon K- and L-edge spectra: a theoretical study using the four-component static exchange approximation. J. Phys. Chem. C 111, 13846–13850 (2007).

    Google Scholar 

  32. 32.

    Diller, K. et al. Polyphenylsilole multilayers - an insight from X-ray electron spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 31117–31124 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Parrill, T. M. & Chung, Y. W. Surface analysis of cubic silicon carbide (001). Surf. Sci. 243, 96–112 (1991).

    CAS  Google Scholar 

  34. 34.

    Hijikata, Y., Yaguchi, H., Yoshikawa, M. & Yoshida, S. Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films. Appl. Surf. Sci 184, 161–166 (2001).

    CAS  Google Scholar 

  35. 35.

    Lee, S., Makan, S., Banaszak Holl, M. M. & McFeely, F. R. Synthetic control of solid/solid interfaces: Analysis of three new silicon/silicon oxide interfaces by soft X-ray photoemission. J. Am. Chem. Soc. 116, 11819–11826 (1994).

    CAS  Google Scholar 

  36. 36.

    Mesarwi, A. & Ignatiev, A. X-ray photoemission study of Y-promoted oxidation of the Si(100) surface. Surf. Sci. 244, 15–21 (1991).

    CAS  Google Scholar 

  37. 37.

    Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. 56–57 (Physical Electronics Division, Perkin-Elmer Corporation, 1992).

  38. 38.

    Lin, G.-R. et al. Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 159, K35–K41 (2012).

    CAS  Google Scholar 

  39. 39.

    Tsai, H. S., Hsiao, C. H., Chen, C. W., Ouyang, H. & Liang, J. H. Synthesis of nonepitaxial multilayer silicene assisted by ion implantation. Nanoscale 8, 9488–9492 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Mönig, H. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018).

    PubMed  Google Scholar 

  41. 41.

    Mönig, H. Copper-oxide tip functionalization for submolecular atomic force microscopy. Chem. Commun. 54, 9874–9888 (2018).

    Google Scholar 

  42. 42.

    Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon-silicon triple bond. Science 305, 1755–1757 (2004).

    CAS  PubMed  Google Scholar 

  43. 43.

    Yesilpinar, D. et al. High resolution noncontact atomic force microscopy imaging with oxygen-terminated copper tips at 78 K. Nanoscale 12, 2961–2965 (2020).

    CAS  PubMed  Google Scholar 

  44. 44.

    Liu, L. et al. α-Diazo ketones in on-surface chemistry. J. Am. Chem. Soc. 140, 6000–6005 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Campbell, C. T. The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770 (2017).

    CAS  Google Scholar 

  46. 46.

    Hammond, G. S. A correlation of reaction rates. J. Am. Chem. Soc. 77, 334–338 (1955).

    CAS  Google Scholar 

  47. 47.

    Nilson, A., Pettersson, L. G. M. & Nørskov, J. K. Chemical Bonding at Surfaces and Interfaces 1st edn, Ch. 3 (Elsevier, 2008).

  48. 48.

    Cao, K., Füchsel, G., Kleyn, A. W. & Juurlink, L. B. F. Hydrogen adsorption and desorption from Cu(111) and Cu(211). Phys. Chem. Chem. Phys. 20, 22477–22488 (2018).

    CAS  PubMed  Google Scholar 

  49. 49.

    Anger, G., Winkler, A. & Rendulic, K. D. Adsorption and desorption kinetics in the systems H2/Cu(111), H2/Cu(110) and H2/Cu(100). Surf. Sci. 220, 1–17 (1989).

    CAS  Google Scholar 

  50. 50.

    Zhao, M. & Anderson, A. B. Theory of hydrogen deposition and evolution on Cu(111) electrodes. J. Electrochem. Soc. 164, H691–H695 (2017).

    CAS  Google Scholar 

  51. 51.

    Björk, J. in On-surface Synthesis II (eds de Oteyza, D. G. & Rogero, C.) 19–34 (Springer, 2018).

  52. 52.

    Svane, K. L. & Hammer, B. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces. J. Chem. Phys. 141, 174705 (2014).

    CAS  PubMed  Google Scholar 

  53. 53.

    Matsuo, T. & Hayakawa, N. π-Electron systems containing Si=Si double bonds. Sci. Technol. Adv. Mat. 19, 108–129 (2018).

    CAS  Google Scholar 

  54. 54.

    Sasamori, T., Yuasa, A., Hosoi, Y., Furukawa, Y. & Tokitoh, N. 1,2-Bis(ferrocenyl)disilene: a multistep redox system with an Si=Si double bond. Organometallics 27, 3325–3327 (2008).

    CAS  Google Scholar 

  55. 55.

    Kobayashi, M. et al. Air-stable, room-temperature emissive disilenes with π-extended aromatic groups. J. Am. Chem. Soc. 132, 15162–15163 (2010).

    CAS  PubMed  Google Scholar 

  56. 56.

    Li, L. et al. Coplanar oligo(p-phenylenedisilenylene)s as Si=Si analogues of oligo(p-phenylenevinylene)s: evidence for extended π-conjugation through the carbon and silicon π-frameworks. J. Am. Chem. Soc. 137, 15026–15035 (2015).

    CAS  PubMed  Google Scholar 

  57. 57.

    Bejan, I. & Scheschkewitz, D. Two Si–Si double bonds connected by a phenylene bridge. Angew. Chem. Int. Ed. 46, 5784–5786 (2007).

    Google Scholar 

  58. 58.

    Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J. Am. Chem. Soc. 129, 14164–14165 (2007).

    CAS  PubMed  Google Scholar 

  59. 59.

    Tamao, K., Kobayashi, M., Matsuo, T., Furukawa, S. & Tsuji, H. The first observation of electroluminescence from di(2-naphthyl)disilene, an Si=Si double bond-containing π-conjugated compound. Chem. Commun. 48, 1030–1032 (2012).

    CAS  Google Scholar 

  60. 60.

    Obeid, N. M. et al. (Oligo)aromatic species with one or two conjugated Si=Si bonds: near-IR emission of anthracenyl-bridged tetrasiladiene. Dalton Trans. 46, 8839–8848 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    CAS  PubMed  Google Scholar 

  62. 62.

    Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

    CAS  Google Scholar 

  63. 63.

    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    CAS  PubMed  Google Scholar 

  64. 64.

    Elemans, J. A. A. W., Lei, S. & De Feyter, S. Molecular and supramolecular networks on surfaces: from two-dimensional crystal engineering to reactivity. Angew. Chem. Int. Ed. 48, 7298–7332 (2009).

    CAS  Google Scholar 

  65. 65.

    McCreery, R. L., Yana, H. & Bergrena, A. J. A critical perspective on molecular electronic junctions: there is plenty of room in the middle. Phys. Chem. Chem. Phys. 15, 1065–1081 (2013).

    CAS  PubMed  Google Scholar 

  66. 66.

    Nicholson, K. T., Zhang, K. Z. & Banaszak Holl, M. M. Chemisorption of H8Si8O12 clusters on gold: a novel Si–H bond activation. J. Am. Chem. Soc. 121, 3232–3233 (1999).

    CAS  Google Scholar 

  67. 67.

    Fadeev, A. Y. & McCarthy, T. J. A new route to covalently attached monolayers: reaction of hydridosilanes with titanium and other metal surfaces. J. Am. Chem. Soc. 121, 12184–12185 (1999).

    CAS  Google Scholar 

  68. 68.

    Klare, H. F. T. et al. Cooperative catalytic activation of Si−H bonds by a polar Ru−S bond: regioselective low-temperature C−H silylation of indoles under neutral conditions by a Friedel−Crafts mechanism. J. Am. Chem. Soc. 133, 3312–3315 (2011).

    CAS  PubMed  Google Scholar 

  69. 69.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  70. 70.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab-initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  71. 71.

    Perdew, J., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996) ; erratum 78, 1396 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  73. 73.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  74. 74.

    Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    CAS  Google Scholar 

  75. 75.

    Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    CAS  Google Scholar 

  76. 76.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  77. 77.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  78. 78.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  79. 79.

    Becke, A. D. & Johnson, E. R. A density-functional model of the dispersion interaction. J. Chem. Phys. 123, 154101 (2005).

    PubMed  Google Scholar 

  80. 80.

    Johnson, E. R. & Becke, A. D. A post-Hartree–Fock model of intermolecular interactions. J. Chem. Phys. 123, 024101 (2005).

    Google Scholar 

  81. 81.

    Johnson, E. R. & Becke, A. D. A post-Hartree–Fock model of intermolecular interactions: inclusion of higher-order corrections. J. Chem. Phys. 124, 174104 (2006).

    PubMed  Google Scholar 

  82. 82.

    Larsen, A. H. et al. The atomic simulation environment - a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Google Scholar 

  83. 83.

    Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).

    CAS  Google Scholar 

  84. 84.

    Straumanis, M. E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Cryst A25, 676–682 (1969).

    Google Scholar 

  85. 85.

    Kittel, C. Introduction to Solid State Physics 7th edn (Wiley, 1996).

  86. 86.

    Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Furche, F. et al. Turbomole. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 91–100 (2014).

    CAS  Google Scholar 

  88. 88.

    Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Google Scholar 

  89. 89.

    Eichkorn, K., Treutler, O., Öhm, H., Häser, M. & Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 240, 283–290 (1995).

    CAS  Google Scholar 

  90. 90.

    Eichkorn, K., Weigend, F., Treutler, O. & Ahlrichs, R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 97, 119–124 (1997).

    CAS  Google Scholar 

  91. 91.

    Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    CAS  Google Scholar 

  92. 92.

    Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    CAS  Google Scholar 

  93. 93.

    Humphrey, W., Dalke, A. & Schulten, K. VMD - visual molecular dynamics. J. Molec. Graphics 14, 33–38 (1996).

    CAS  Google Scholar 

  94. 94.

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  PubMed  Google Scholar 

Download references


We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) within the collaborative research centres SFB 858 (projects B02, Z01) and TRR61 (projects B03 and B07). H.M. and H.F. further thank the DFG for support through projects MO 2345/4-1 and FU 299/19. H.-Y.G. acknowledges financial support from NSFC within Grant 21972104 and ‘1000-Youth Talents Plan’. We thank D. Yesilpinar for technical support during the AFM measurements.

Author information




L.L. performed the STM experiments. H. Kong participated in the STM experiments of BDS 3. H. Klaasen performed organic synthesis. M.C.W. performed theoretical studies. B.S.L., L.L. and A.T. performed XPS experiments and B.S.L. and L.L. performed the nc-AFM experiments, both experiments were supervised by H.M. All authors discussed the results. H.-Y.G., J.N., H.F. and A.S. supervised the project and designed the experiments. L.L., H. Klaasen, M.C.W., A.T., H.-Y.G. and A.S. wrote the manuscript with suggestions from all authors.

Corresponding authors

Correspondence to Hong-Ying Gao, Johannes Neugebauer, Harald Fuchs or Armido Studer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Chemical synthesis, Supplementary Figs. 1–30, Tables 1–3, Discussion and NMR spectra of new compounds.

Supplementary Data

Zip-file containing the converged adsorption geometries of all investigated structures as .txt files.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Klaasen, H., Witteler, M.C. et al. Polymerization of silanes through dehydrogenative Si–Si bond formation on metal surfaces. Nat. Chem. 13, 350–357 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing