Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-surface synthesis of ballbot-type N-heterocyclic carbene polymers

Abstract

N-Heterocyclic carbenes (NHCs) are established ligands for metal complexes and surfaces. Here we go beyond monomeric NHCs and report on the synthesis of NHC polymers on gold surfaces, consisting of ballbot-type repeating units bound to single Au adatoms. We designed, synthesized and deposited precursors containing different halogens on gold surfaces under ultrahigh vacuum. Conformational, electronic and charge transport properties were assessed by combining low-temperature scanning tunneling microscopy, non-contact atomic force microscopy, X-ray photoelectron spectroscopy, first-principles calculations and reactive force field simulations. The confirmed ballbot-type nature of the NHCs explains the high surface mobility of the incommensurate NHC polymers, which is prerequisite for their desired spatial alignment. The delicate balance between mobility and polymerization rate allows essential parameters for controlling polymer directionality to be derived. These polymers open up new opportunities in the fields of nanoelectronics, surface functionalization and catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General aspects of NHCs on surfaces.
Fig. 2: Self-assembly of IPrI2 on Au(111).
Fig. 3: Polymerization of IPrI2 on Au(111).
Fig. 4: Polymers acquired from IPrI2 molecules and their mobility and orientation on Au(100).
Fig. 5: Selective formation of ordered NHC polymers on Au(100).

Similar content being viewed by others

Data availability

Data supporting the findings of this work are available within this paper or its Supplementary Information.

References

  1. Schoenbaum, C. A., Schwartz, D. K. & Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 47, 1438–1445 (2014).

    Article  PubMed  CAS  Google Scholar 

  2. Mallat, T., Orglmeister, E. & Baiker, A. Asymmetric catalysis at chiral metal surfaces. Chem. Rev. 107, 4863–4890 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Judd, C. J. et al. Structural characterisation of molecular conformation and the incorporation of adatoms in an on-surface Ullmann-type reaction. Commun. Chem. 3, 166 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Grossmann, L. et al. Evolution of adsorption heights in the on-surface synthesis and decoupling of covalent organic networks on Ag(111) by normal-incidence X-ray standing wave. Nanoscale Horiz. 7, 51–62 (2022).

    Article  CAS  Google Scholar 

  6. Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–493 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    Article  PubMed  CAS  Google Scholar 

  11. Crudden, C. M. et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 6, 409–414 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Zhukhovitskiy, A. V., MacLeod, M. J. & Johnson, J. A. Carbene ligands in surface chemistry: from stabilization of discrete elemental allotropes to modification of nanoscale and bulk substrates. Chem. Rev. 115, 11503–11532 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Crudden, C. M. et al. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing. Nat. Commun. 7, 12654 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wu, C.-Y. et al. High-spatial-resolution mapping of catalytic reactions on single particles. Nature 541, 511–515 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Smith, C. A. et al. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 119, 4986–5056 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Koy, M., Bellotti, P., Das, M. & Glorius, F. N-Heterocyclic carbenes as tunable ligands for catalytic metal surfaces. Nat. Catal. 4, 352–363 (2021).

    Article  CAS  Google Scholar 

  17. Wang, G. et al. Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. Nat. Chem. 9, 152–156 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Ranganath, K. V. S., Kloesges, J., Schaefer, A. H. & Glorius, F. Asymmetric nanocatalysis: N-heterocyclic carbenes as chiral modifiers of Fe3O4/Pd nanoparticles. Angew. Chem. Int. Ed. 49, 7786–7789 (2010).

    Article  CAS  Google Scholar 

  19. Ernst, J. B. et al. Molecular adsorbates switch on heterogeneous catalysis: induction of reactivity by N-heterocyclic carbenes. J. Am. Chem. Soc. 139, 9144–9147 (2017).

    Article  PubMed  CAS  Google Scholar 

  20. Kaeffer, N., Liu, H.-J., Lo, H.-K., Fedorov, A. & Coperet, C. An N-heterocyclic carbene ligand promotes highly selective alkyne semihydrogenation with copper nanoparticles supported on passivated silica. Chem. Sci. 9, 5366–5371 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. van Dongen, S. F. M., Elemans, J. A. A. W., Rowan, A. E. & Nolte, R. J. M. Processive catalysis. Angew. Chem. Int. Ed. 53, 11420–11428 (2014).

    Article  Google Scholar 

  22. Inayeh, A. et al. Self-assembly of N-heterocyclic carbenes on Au(111). Nat. Commun. 12, 4034 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ren, J. et al. A unidirectional surface-anchored N-heterocyclic carbene rotor. Nano Lett. 20, 5922–5928 (2020).

    Article  PubMed  CAS  Google Scholar 

  24. Man, R. W. Y. et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J. Am. Chem. Soc. 140, 1576–1579 (2018).

    Article  PubMed  CAS  Google Scholar 

  25. Mata, J. A., Poyatos, M. & Peris, E. Structural and catalytic properties of chelating bis- and tris-N-heterocyclic carbenes. Coord. Chem. Rev. 251, 841–859 (2007).

    Article  CAS  Google Scholar 

  26. Cao, Z. et al. Chelating N-heterocyclic carbene ligands enable tuning of electrocatalytic CO2 reduction to formate and carbon monoxide: surface organometallic chemistry. Angew. Chem. Int. Ed. 57, 4981–4985 (2018).

    Article  CAS  Google Scholar 

  27. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Di Giovannantonio, M. et al. Insight into organometallic intermediate and its evolution to covalent bonding in surface-confined ullmann polymerization. ACS Nano 7, 8190–8198 (2013).

    Article  PubMed  Google Scholar 

  29. Pawlak, R. et al. Bottom-up synthesis of nitrogen-doped porous graphene nanoribbons. J. Am. Chem. Soc. 142, 12568–12573 (2020).

    Article  PubMed  CAS  Google Scholar 

  30. Eichhorn, J. et al. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks. ACS Nano 8, 7880–7889 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Fritton, M. et al. The role of kinetics versus thermodynamics in surface-assisted Ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 141, 4824–4832 (2019).

    Article  PubMed  CAS  Google Scholar 

  32. Simonov, K. A. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 9, 8997–9011 (2015).

    Article  PubMed  CAS  Google Scholar 

  33. Di Giovannantonio, M. et al. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc. 138, 16696–16702 (2016).

    Article  PubMed  Google Scholar 

  34. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. Mönig, H. et al. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nat. Nanotechnol. 13, 371–375 (2018).

    Article  PubMed  Google Scholar 

  36. Bakker, A. et al. Elucidating the binding modes of N-heterocyclic carbenes on a gold surface. J. Am. Chem. Soc. 140, 11889–11892 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Kawai, S. et al. Direct quantitative measurement of the C=O center dot center dot center dot H-C bond by atomic force microscopy. Sci. Adv. 3, e1603258 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ohmann, R. et al. Supramolecular rotor and translator at work: on-surface movement of single atoms. ACS Nano 9, 8394–8400 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. Schuler, B. et al. Adsorption geometry determination of single molecules by atomic force microscopy. Phys. Rev. Lett. 111, 106103 (2013).

    Article  PubMed  Google Scholar 

  40. Huber, F. et al. Chemical bond formation showing a transition from physisorption to chemisorption. Science 366, 235–238 (2019).

    Article  PubMed  CAS  Google Scholar 

  41. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. Meyer, J. et al. Tuning the formation of discrete coordination nanostructures. Chem. Commun. 51, 12621–12624 (2015).

    Article  CAS  Google Scholar 

  43. Robles, R. et al. Supramolecular chemistry based on 4-acetylbiphenyl on Au(111). Phys. Chem. Chem. Phys. 22, 15208–15213 (2020).

    Article  PubMed  CAS  Google Scholar 

  44. Shi, Z. & Lin, N. Porphyrin-based two-dimensional coordination Kagome lattice self-assembled on a Au(111) surface. J. Am. Chem. Soc. 131, 5376–5377 (2009).

    Article  PubMed  CAS  Google Scholar 

  45. Pan, Y. et al. Effect of lattice-gas atoms on the adsorption behaviour of thioether molecules. Phys. Chem. Chem. Phys. 14, 10987–10993 (2012).

    Article  PubMed  CAS  Google Scholar 

  46. Yang, Z. et al. Orbital redistribution in molecular nanostructures mediated by metal–organic bonds. ACS Nano 8, 10715–10722 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Jaklevic, R. C. & Elie, L. Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au(111). Phys. Rev. Lett. 60, 120–123 (1988).

    Article  PubMed  CAS  Google Scholar 

  48. Liu, J. et al. Iodine-doping-induced electronic structure tuning of atomic cobalt for enhanced hydrogen evolution electrocatalysis. ACS Nano 15, 18125–18134 (2021).

    Article  PubMed  CAS  Google Scholar 

  49. Eder, G. et al. Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-tri(4-iodophenyl)benzene on Au(111). ACS Nano 7, 3014–3021 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    Article  PubMed  CAS  Google Scholar 

  52. Li, H. K. et al. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew. Chem. Int. Ed. 44, 5100–5103 (2005).

    Article  CAS  Google Scholar 

  53. Franz, M. et al. Controlled growth of ordered monolayers of N-heterocyclic carbenes on silicon. Nat. Chem. 13, 828–835 (2021).

    Article  PubMed  CAS  Google Scholar 

  54. Doud, E. A. et al. In situ formation of N-heterocyclic carbene-bound single-molecule junctions. J. Am. Chem. Soc. 140, 8944–8949 (2018).

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, H. et al. Surface supported gold-organic hybrids: on-surface synthesis and surface directed orientation. Small 10, 1361–1368 (2014).

    Article  PubMed  CAS  Google Scholar 

  56. Amirjalayer, S., Bakker, A., Freitag, M., Glorius, F. & Fuchs, H. Cooperation of N-heterocyclic carbenes on a gold surface. Angew. Chem. Int. Ed. 59, 21230–21235 (2020).

    Article  CAS  Google Scholar 

  57. Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    Article  PubMed  CAS  Google Scholar 

  58. Bita, I. et al. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 321, 939–943 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. Hapala, P., Temirov, R., Tautz, F. S. & Jelinek, P. Origin of high-resolution IETS-STM images of organic molecules with functionalized tips. Phys. Rev. Lett. 113, 226101 (2014).

    Article  PubMed  Google Scholar 

  60. Schulze Lammers, B. et al. Benchmarking atomically defined AFM tips for chemical-selective imaging. Nanoscale 13, 13617–13623 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.G. and N.L.D. acknowledge financial support from the Deutsche Forschungsgemeinschaft (SFB 858 and SFB 1459), as do H.F. (SFB 858, FU 299/18-1) and H.M. (MO 2345/4-1, 519972808). Q.D. acknowledges financial support from the National Natural Science Foundation of China (U2032206) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB36000000). H.-J.G. acknowledges financial support from the National Natural Science Foundation of China (61888102) and the National Key Research and Development Program of China (2019YFA0308500). L.H. acknowledges financial support from the National Key Research and Development Program of China (2018YFA0305800). Computations were carried out using the PALMA II HPC cluster provided by the University of Münster.

Author information

Authors and Affiliations

Authors

Contributions

F.G. and H.F. initiated the project. F.G., H.F., H.M., M.K. and J.R. designed the experiments and coordinated the study. M.K., A.N. and C.G. designed and synthesized the molecules. J.R. and B.S.L. performed the STM measurements and analysed them with H.M. and Q.D.; H.O., M.N. and N.L.D. performed DFT and ReaxFF calculations. B.S.L., H.M. and J.R. did the nc-AFM(CuOx- tips)/XPS experiments and interpreted the data. Q.Z., L.H., Y.X., J.R. and H.-J.G. did the nc-AFM experiment using CO-functionalized tips. J.R. wrote the manuscript together with M.K., H.O., Q.D., H.M., N.L.D., H.F. and F.G. All the authors read and commented on the manuscript.

Corresponding authors

Correspondence to Hong-Jun Gao, Harry Mönig, Nikos L. Doltsinis, Harald Fuchs or Frank Glorius.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Katharina Kaiser, Shigeki Kawai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, discussion and tables.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Koy, M., Osthues, H. et al. On-surface synthesis of ballbot-type N-heterocyclic carbene polymers. Nat. Chem. 15, 1737–1744 (2023). https://doi.org/10.1038/s41557-023-01310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01310-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing