Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries

Subjects

Abstract

The ionic conductivity of composite solid-state electrolytes does not meet the application requirements of solid-state lithium (Li) metal batteries owing to the harsh space charge layer of different phases and low concentration of movable Li+. Herein, we propose a robust strategy for creating high-throughput Li+ transport pathways by coupling the ceramic dielectric and electrolyte to overcome the low ionic conductivity challenge of composite solid-state electrolytes. A highly conductive and dielectric composite solid-state electrolyte is constructed by compositing the poly(vinylidene difluoride) matrix and the BaTiO3–Li0.33La0.56TiO3–x nanowires with a side-by-side heterojunction structure (PVBL). The polarized dielectric BaTiO3 greatly promotes the dissociation of Li salt to produce more movable Li+, which locally and spontaneously transfers across the interface to coupled Li0.33La0.56TiO3–x for highly efficient transport. The BaTiO3–Li0.33La0.56TiO3–x effectively restrains the formation of the space charge layer with poly(vinylidene difluoride). These coupling effects contribute to a quite high ionic conductivity (8.2 × 10−4 S cm−1) and lithium transference number (0.57) of the PVBL at 25 °C. The PVBL also homogenizes the interfacial electric field with electrodes. The LiNi0.8Co0.1Mn0.1O2/PVBL/Li solid-state batteries stably cycle 1,500 times at a current density of 180 mA g1, and pouch batteries also exhibit an excellent electrochemical and safety performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the side-by-side coupled BTO–LLTO nanowires and PVBL electrolyte.
Fig. 2: Physical and Li dendrite suppression properties of PVBL electrolyte.
Fig. 3: Characterization of the Li salt dissociation and ion transport in PVBL electrolyte.
Fig. 4: Ion transport mechanism analysis of the PVBL electrolyte.
Fig. 5: Properties of the NCM811/Li solid-state batteries using PVBL electrolyte.
Fig. 6: Characterization and simulation of the interfaces of PVBL electrolyte with cathode and Li metal anode.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request or at https://zenodo.org/record/7597104.

References

  1. Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  CAS  Google Scholar 

  2. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  Google Scholar 

  3. Zou, Z. et al. Mobile ions in composite solids. Chem. Rev. 120, 4169–4221 (2020).

    Article  CAS  Google Scholar 

  4. Tian, Y. et al. Promises and challenges of next-generation ‘beyond Li+’ batteries for electric vehicles and grid decarbonization. Chem. Rev. 121, 1623–1669 (2021).

    Article  CAS  Google Scholar 

  5. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  6. Yao, Y. et al. Sodium ion batteries: toward high energy density all solid-state sodium batteries with excellent flexibility. Adv. Energy Mater. 10, 2070055 (2020).

    Article  CAS  Google Scholar 

  7. Wu, J. et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 14, 12–36 (2021).

    Article  CAS  Google Scholar 

  8. Xu, K. Electrolytes and interphases in Li+ batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  9. Huang, Y.-F. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energy Environ. Sci. 14, 6021–6029 (2021).

    Article  CAS  Google Scholar 

  10. Lei, D. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 10, 4244 (2019).

    Article  Google Scholar 

  11. Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from ‘ceramic-in-polymer’ to ‘polymer-in-ceramic’. Nano Energy 46, 176–184 (2018).

    Article  CAS  Google Scholar 

  12. Zheng, J., Wang, P., Liu, H. & Hu, Y.-Y. Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2, 1452–1459 (2019).

    Article  CAS  Google Scholar 

  13. Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Commun. 12, 675 (2021).

    Article  CAS  Google Scholar 

  14. Mi, J. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 48, 375–383 (2022).

    Article  Google Scholar 

  15. Liu, G. et al. Preventing dendrite growth by a soft piezoelectric material. ACS Mater. Lett. 1, 498–505 (2019).

    Article  CAS  Google Scholar 

  16. Gao, T. et al. Piezoelectric mechanism and a compliant film to effectively suppress dendrite growth. ACS Appl. Mater. Interfaces 12, 51448–51458 (2020).

    Article  CAS  Google Scholar 

  17. Liu, S. et al. Solid-state lithium metal batteries with extended cycling enabled by dynamic adaptive solid-state interfaces. Adv. Mater. 33, e2008084 (2021).

    Article  Google Scholar 

  18. Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    Article  CAS  Google Scholar 

  19. Fan, L.-Z., He, H. & Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 6, 1003–1019 (2021).

    Article  CAS  Google Scholar 

  20. Maier, J. Space charge regions in solid two phase systems and their conduction contribution — II Contact equilibrium at the interface of two ionic conductors and the related conductivity effect. J. Phys. Chem. Solids 89, 355–362 (1985).

    CAS  Google Scholar 

  21. De Klerk, N. J. J. & Wagemaker, M. Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609–5618 (2018).

    CAS  Google Scholar 

  22. Jiang, B. et al. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev. 48, 1194–1228 (2019).

    Article  CAS  Google Scholar 

  23. Kalinin, S. V., Johnson, C. Y. & Bonnell, D. A. Domain polarity and temperature induced potential inversion on the BaTiO3 (100) surface. J. Appl. Phys. 91, 3816–3823 (2002).

    Article  CAS  Google Scholar 

  24. Guo, Y. et al. Shaping Li deposits from wild dendrites to regular crystals via the ferroelectric effect. Nano Lett. 20, 7680–7687 (2020).

    Article  CAS  Google Scholar 

  25. Wang, C. et al. High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nat. Commun. 12, 6536 (2021).

    Article  Google Scholar 

  26. Takada, K. et al. Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion. 225, 594–597 (2012).

    Article  CAS  Google Scholar 

  27. Wu, B. et al. Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J. Mater. Chem. A 4, 15266–15280 (2016).

    Article  CAS  Google Scholar 

  28. Yada, C. et al. A high-throughput approach developing lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries. J. Electrochem. Soc. 162, A722–A726 (2015).

    Article  CAS  Google Scholar 

  29. Xia, S. et al. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano 15, 3161–3170 (2021).

    Article  CAS  Google Scholar 

  30. Jacob, M. M. E. et al. FTIR studies of DMF plasticized polyvinyledene fluoride based polymer electrolytes. Electrochim. Acta 45, 1701–1706 (2000).

    Article  CAS  Google Scholar 

  31. Yang, K., Chen, L., Ma, J., He, Y.-B. & Kang, F. Progress and perspective of Li1+xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat. 3, 1195–1217 (2021).

  32. Guo, W. et al. Mixed ion and electron‐conducting scaffolds for high‐rate lithium metal anodes. Adv. Mater. 9, 1900193 (2019).

    Google Scholar 

  33. Li, S. et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy 35, 92–100 (2017).

    Article  CAS  Google Scholar 

  34. Liu, Z. et al. Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction. Adv. Funct. Mater. 29, 1807279 (2019).

    Article  CAS  Google Scholar 

  35. Su, R. et al. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small 11, 202–207 (2015).

    Article  CAS  Google Scholar 

  36. Zhu, P., Chen, Y. & Shi, J. Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3-mediated piezoelectricity. Adv. Mater. 32, 2001976 (2020).

    Article  CAS  Google Scholar 

  37. Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021).

    Article  CAS  Google Scholar 

  38. Zheng, J., Tang, M. & Hu, Y.-Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. 55, 12538–12542 (2016).

    Article  CAS  Google Scholar 

  39. Zheng, J. & Hu, Y.-Y. New insights into the compositional dependence of Li+ transport in polymer–ceramic composite electrolytes. ACS Appl. Mater. Interfaces 10, 4113–4120 (2018).

    Article  CAS  Google Scholar 

  40. Yang, K. et al. Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries. Angew. Chem. Int. Ed. 60, 24668–24675 (2021).

    Article  CAS  Google Scholar 

  41. Yang, H. et al. Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J. Mater. Chem. A 8, 7261–7272 (2020).

    Article  CAS  Google Scholar 

  42. Emery, J. et al. Polaronic effects on lithium motion in intercalated perovskite lithium lanthanum titanate observed by 7Li NMR and impedance spectroscopy. J. Phys. Condens. Matter 11, 10401–10417 (1999).

    Article  CAS  Google Scholar 

  43. Duan, H. et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. J. Am. Chem. Soc. 140, 82–85 (2018).

    Article  CAS  Google Scholar 

  44. Du, G. et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode. Adv. Energy Mater. 10, 1903351 (2020).

    Article  CAS  Google Scholar 

  45. Liang, J. Y. et al. Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries. J. Am. Chem. Soc. 140, 6767–6770 (2018).

    Article  CAS  Google Scholar 

  46. Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    Article  CAS  Google Scholar 

  47. Yada, C. et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv. Energy Mater. 4, 1301416 (2014).

    Article  Google Scholar 

  48. Wang, L. et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    Article  CAS  Google Scholar 

  49. Xue, C., Zhang, X., Wang, S., Li, L. & Nan, C. W. Organic–organic composite electrolyte enables ultralong cycle life in solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 12, 24837–24844 (2020).

    Article  CAS  Google Scholar 

  50. Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article  Google Scholar 

  51. Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2021YFF0500600, Y.-B.H.), National Natural Science Foundation of China (no. U2001220, Y.-B.H.; 22272175, G.Z.), Local Innovative Research Teams Project of Guangdong Pearl River Talents Program (no. 2017BT01N111, F.K.), Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center (no. XMHT20200203006, Y.-B.H.) and Shenzhen Technical Plan Project (nos RCJC20200714114436091 and JCYJ20220818101003007, Y.-B.H.; JCYJ20220818101003008, F.K.). We acknowledge J. He at State Key Laboratory of Chemical Engineering at Zhejiang University for the nano-infrared measurement.

Author information

Authors and Affiliations

Authors

Contributions

Y.-B.H. and F.K. conceived the idea. Y.-B.H., G.Z. and F.K. supervised the project. Y.-B.H., P.S., G.Z., F.K., J.M. and M.L. designed the experiments. P.S. performed the experiments with help from S.G., Y.H., S.W., L.Z., L.C., K.Y., X.L., Y.L., X.A., D.Z., X.C. and Q.L. G.Z. performed the NMR experiment. All authors discussed the results in the manuscript. P.S., Y.-B.H., G.Z., M.L., W.L. and F.K. wrote and revised the initial paper, which was approved by all authors.

Corresponding authors

Correspondence to Guiming Zhong, Yan-Bing He or Feiyu Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Frederick Nti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 AFM and corresponding Young’s modulus test of various electrolytes.

a, b PVDF. c, d PVB. e, f, PVL. g, h PVBL.

Extended Data Fig. 2 Raman spectra of PVDF and PVB electrolytes at 25 oC.

a, PVDF. b, PVB.

Extended Data Fig. 3 6Li NMR spectra of pristine and 6Li cycled PVDF and PVB electrolytes.

a, b Pristine PVDF and PVB. c, d 6Li cycled PVDF and PVB.

Extended Data Fig. 4 Atomic model of BTO-LLTO heterogeneous structures and four possible Li diffusion paths.

a–d, Top view (a, b) and left view (c, d) of two possible BTO (1 1 0)-LLTO (1 1 0) structures. e-h, Top view (e, f) and left view (g, h) of corresponding optimized BTO (1 1 0)-LLTO (1 1 0) structures and four possible Li diffusion paths (path1-1, path2-1, path1-2 and path 2-2).

Extended Data Fig. 5 Ion transport mechanism of the BTO-LLTO heterogeneous structures.

a, b Left view of two possible BTO (1 1 0)-LLTO (1 1 0) structures. c-f, Top view of two Li diffusion paths (path 2-1 and path 2-2) (c, e) at the interface of BTO (1 1 0)-LLTO (1 1 0) heterogeneous structures and corresponding energy change (d, f). g, h, Top view of the Li diffusion path from the interface to the bulk phase of the LLTO lattice (g) and corresponding energy change (h).

Extended Data Fig. 6 Electrochemical performance of NCM811/Li solid-state batteries using BTO-LLTO coupled structure and BTO/LLTO nanowire mixture.

a, Rate performance of NCM811/Li batteries. b, c, Cycling stability of NCM811/Li batteries at 0.5 C (b) and 1 C (c) at 25 oC.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–35, Tables 1–4 and refs. 1–13.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Ma, J., Liu, M. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610 (2023). https://doi.org/10.1038/s41565-023-01341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01341-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing