Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemically stable polyarylether-based covalent organic frameworks

Abstract

The development of crystalline porous materials with high chemical stability is of paramount importance for their practical application. Here, we report the synthesis of polyarylether-based covalent organic frameworks (PAE-COFs) with high crystallinity, porosity and chemical stability, including towards water, owing to the inert nature of their polyarylether-based building blocks. The PAE-COFs are synthesized through nucleophilic aromatic substitution reactions between ortho-difluoro benzene and catechol building units, which form ether linkages. The resulting materials are shown to be stable against harsh chemical environments including boiling water, strong acids and bases, and oxidation and reduction conditions. Their stability surpasses the performance of other known crystalline porous materials such as zeolites, metal–organic frameworks and covalent organic frameworks. We also demonstrate the post-synthetic functionalization of these materials with carboxyl or amino functional groups. The functionalized PAE-COFs combine porosity, high stability and recyclability. A preliminary application of these materials is demonstrated with the removal of antibiotics from water over a wide pH range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy for preparing stable porous crystalline PAE-COFs.
Fig. 2: Crystallinity and stability.
Fig. 3: Gas adsorption and separation.
Fig. 4: Study of antibiotic uptake.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the Article and its Supplementary Information or from the corresponding author upon reasonable request.

References

  1. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  2. Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    Article  CAS  Google Scholar 

  3. Huang, N., Wang, P. & Jiang, D. L. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 1–19 (2016).

    Article  Google Scholar 

  4. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, 923–930 (2017).

    Article  CAS  Google Scholar 

  5. Ding, S. Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    Article  CAS  Google Scholar 

  6. Jin, Y. H., Hu, Y. M. & Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1, 0056 (2017).

    Article  Google Scholar 

  7. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  8. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  CAS  Google Scholar 

  9. Guan, X. Y. et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc. 140, 4494–4498 (2018).

    Article  CAS  Google Scholar 

  10. Ding, S. Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19922 (2011).

    Article  CAS  Google Scholar 

  11. Fang, Q. R. et al. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew. Chem. Int. Ed. 53, 2878–2882 (2014).

    Article  CAS  Google Scholar 

  12. Li, H. et al. 3D covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J. Am. Soc. Chem. 138, 14783–14788 (2016).

    Article  CAS  Google Scholar 

  13. Han, X. et al. Chiral covalent organic frameworks with high chemical stability for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 139, 8693–8697 (2017).

    Article  CAS  Google Scholar 

  14. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. L. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826–8830 (2008).

    Article  CAS  Google Scholar 

  15. Bertrand, G. H. V., Michaelis, V. K., Ong, T. C., Griffin, R. G. & Dincă, M. Thiophene-based covalent organic frameworks. Proc. Natl Acad. Sci. USA 110, 4923–4928 (2013).

    Article  CAS  Google Scholar 

  16. Calik, M. et al. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 136, 17802–17807 (2014).

    Article  CAS  Google Scholar 

  17. Fang, Q. R. et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 137, 8352–8355 (2015).

    Article  CAS  Google Scholar 

  18. Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

    Article  CAS  Google Scholar 

  19. Wang, S. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 139, 4258–4261 (2017).

    Article  CAS  Google Scholar 

  20. Sun, Q. et al. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc. 139, 2786–2793 (2017).

    Article  CAS  Google Scholar 

  21. Li, Z. L. et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible and selective ion exchange. J. Am. Chem. Soc. 139, 17771–17774 (2017).

    Article  CAS  Google Scholar 

  22. Lu, Q. Y. et al. Postsynthetic functionalization of three-dimensional covalent organic framework for selective extraction of lanthanide ions. Angew. Chem. Int. Ed. 57, 6042–6048 (2018).

    Article  CAS  Google Scholar 

  23. Kandambeth, S. et al. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 6, 6786 (2015).

    Article  CAS  Google Scholar 

  24. Mallick, A., Lukose, B., Mane, M. V., Heine, T. & Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  Google Scholar 

  25. Xu, H., Gao, J. & Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 7, 905–912 (2015).

    Article  CAS  Google Scholar 

  26. Wei, P. F. et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 140, 4623–4631 (2018).

    Article  CAS  Google Scholar 

  27. Hergenrother, P. M. The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Perform. Polym. 15, 3–45 (2003).

    Article  CAS  Google Scholar 

  28. Gao, Y. et al. Comparison of PEM properties of copoly(aryl ether ether nitrile)s containing sulfonic acid bonded to naphthalene in structurally different ways. Macromolecules 40, 1512–1520 (2007).

    Article  CAS  Google Scholar 

  29. Gotham, K. & Turner, S. Poly(ether sulphone) as an engineering material. Polymer 15, 665–670 (1974).

    Article  CAS  Google Scholar 

  30. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    Article  CAS  Google Scholar 

  31. Materials Studio v.7.0 (Accelrys Inc, 2013); http://www.3dsbiovia.com/products/collaborative-science/biovia-materials-studio/

  32. Huang, N., Wang, P., Addicoat, M. A., Heine, T. & Jiang, D. L. Ionic covalent organic frameworks: design of a charged interface aligned on 1D channel walls and its unusual electrostatic functions. Angew. Chem. Int. Ed. 56, 4982–4986 (2017).

    Article  CAS  Google Scholar 

  33. Du, N. et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 10, 372–375 (2011).

    Article  CAS  Google Scholar 

  34. Henry, W. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Philos. Trans. R. Soc. Lond. 93, 29–42 (1803).

    Article  Google Scholar 

  35. Fang, Q. R. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).

    Article  Google Scholar 

  36. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    Article  Google Scholar 

  37. Halder, A. et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. 57, 5797–5802 (2018).

    Article  CAS  Google Scholar 

  38. Katz, M. J. et al. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49, 9449–9451 (2013).

    Article  CAS  Google Scholar 

  39. Pan, Y. C., Liu, Y. Y., Zeng, G. F., Zhao, L. & Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystalsin an aqueous system. Chem. Commun. 47, 2071–2073 (2011).

    Article  CAS  Google Scholar 

  40. Stephen, S. Y., Samuel, M. F., Jonathan, P. H., Charmant, A. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1151 (1999).

    Article  Google Scholar 

  41. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  42. Du, N., Robertson, G. P., Song, J., Pinnau, I. & Guiver, M. D. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 42, 6038–6043 (2009).

    Article  CAS  Google Scholar 

  43. Peng, C. et al. Diverse macroscopic helical motions of microribbons driven by electrons. Chem. Commun. 53, 2578–2581 (2017).

    Article  CAS  Google Scholar 

  44. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 533, 316–322 (2016).

    Article  Google Scholar 

  45. Ali, I. New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012).

    Article  CAS  Google Scholar 

  46. Wang, T. et al. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J. Environ. Sci. 52, 111–117 (2017).

    Article  Google Scholar 

  47. Wang, Y., Pan, X., Wang, J., Hou, P. & Qiang, Z. J. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chem. Eng. J. 179, 112–118 (2012).

    Article  Google Scholar 

  48. Ali, M. M. & Ahmed, M. J. Adsorption behavior of doxycycline antibiotic on NaY zeolite from wheat (Triticum aestivum) straws ash. J. Inst. Chem. Eng. 81, 218–224 (2017).

    Article  CAS  Google Scholar 

  49. Singh, S. et al. Nanocuboidal-shaped zirconium based metal organic framework for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase. New J. Chem. 42, 1921–1930 (2018).

    Article  CAS  Google Scholar 

  50. Jade v.5.0 (Materials Data Inc, 1999); https://materialsdata.com/prodjd.html

  51. Kaye, S. S., Dailly, A., Yaghi, O. M. & Long, J. R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176–14177 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.F., V.V., S.Q. and M.X. acknowledge support from the National Natural Science Foundation of China (21571079, 21621001, 21390394, 21571076 and 21571078), the ‘111’ project (B07016 and B17020), Guangdong and Zhuhai Science and Technology Department Project (2012D0501990028), the programme for JLU Science and Technology Innovative Research Team and Sino-French joint laboratory. Q.F. and V.V. acknowledge support from the Thousand Talents programme (China).

Author information

Authors and Affiliations

Authors

Contributions

Q.F., V.V., Y.Y. and S.Q. were responsible for the overall design, direction and supervision of the project. X.G. performed the experimental work. H.L. and Y.M. took SEM images and helped with the TGA and PXRD tests. M.X. was in charge of other physical measurements. All authors discussed the results and contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Qianrong Fang, Yushan Yan or Valentin Valtchev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, supplementary synthetic procedures and supplementary experimental data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Li, H., Ma, Y. et al. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11, 587–594 (2019). https://doi.org/10.1038/s41557-019-0238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0238-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing