Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis

Abstract

αMβ2 integrin (complement receptor 3) is a major receptor for phagocytosis in macrophages. In other contexts, integrins’ activities and functions are mechanically linked to actin dynamics through focal adhesions. We asked whether mechanical coupling of αMβ2 integrin to the actin cytoskeleton mediates phagocytosis. We found that particle internalization was driven by formation of Arp2/3 and formin-dependent actin protrusions that wrapped around the particle. Focal complex-like adhesions formed in the phagocytic cup that contained β2 integrins, focal adhesion proteins and tyrosine kinases. Perturbation of talin and Syk demonstrated that a talin-dependent link between integrin and actin and Syk-mediated recruitment of vinculin enable force transmission to target particles and promote phagocytosis. Altering target mechanical properties demonstrated more efficient phagocytosis of stiffer targets. Thus, macrophages use tyrosine kinase signalling to build a mechanosensitive, talin- and vinculin-mediated, focal adhesion-like molecular clutch, which couples integrins to cytoskeletal forces to drive particle engulfment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CR-mediated phagocytosis involves an actin-based reaching mechanism to engulf target particles.
Fig. 2: Arp2/3 and mDia1 contribute to specific aspects of actin dynamics during CR-mediated phagocytosis.
Fig. 3: Coupling of the actin cytoskeleton to the target enables fast protrusion at the forming phagosome.
Fig. 4: β2 integrins mediate the formation of focal complex-like signalling platforms at the phagosome.
Fig. 5: Mechanical coupling of integrins to the actin cytoskeleton by talin enhances particle engulfment.
Fig. 6: Syk kinase activity is required for vinculin-mediated clutch reinforcement and optimal particle uptake.
Fig. 7: Molecular clutch-mediated mechanosensing regulates phagocytosis.

Similar content being viewed by others

Data availability

Statistical source data supporting Figs. 2, 3, 57 and Extended Data Fig. 1 are provided in Supplementary Information. All data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Lim, J. J., Grinstein, S. & Roth, Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling and homeostasis. Front. Cell. Infect. Microbiol. 7, 191 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Underhill, D. M. & Goodridge, H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 12, 492–502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jaumouillé, V. & Grinstein, S. Molecular mechanisms of phagosome formation. Microbiol. Spectr. 4, MCHD-0013-2015 (2016).

  4. Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, E. J. Complement receptors and phagocytosis. Curr. Opin. Immunol. 3, 76–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, J. et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature 544, 493–497 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newman, S. L., Devery-Pocius, J. E., Ross, G. D. & Henson, P. M. Phagocytosis by human monocyte-derived macrophages. Independent function of receptors for C3b (CR1) and iC3b (CR3). Complement (Basel Switzerland) 1, 213–227 (1984).

    CAS  Google Scholar 

  8. Xu, S., Wang, J., Wang, J.-H. & Springer, T. A. Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl Acad. Sci. USA 114, 3403–3408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Newman, S. L., Mikus, L. K. & Tucci, M. A. Differential requirements for cellular cytoskeleton in human macrophage complement receptor- and Fc receptor-mediated phagocytosis. J. Immunol. 146, 967–974 (1991).

    CAS  PubMed  Google Scholar 

  10. May, R. C., Caron, E., Hall, A. & Machesky, L. M. Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nat. Cell Biol. 2, 246–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Rotty, J. D. et al. Arp2/3 complex is required for macrophage integrin functions but is dispensable for FcR phagocytosis and in vivo motility. Dev. Cell 42, 498–513.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colucci-Guyon, E. et al. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr. Biol. 15, 2007–2012 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Allen, L. A. & Aderem, A. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med. 184, 627–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan, G. Differences in the mode of phagocytosis with Fc and C3 receptors in macrophages. Scand. J. Immunol. 6, 797–807 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17, 955–963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gauthier, N. C. & Roca-Cusachs, P. Mechanosensing at integrin-mediated cell-matrix adhesions: from molecular to integrated mechanisms. Curr. Opin. Cell Biol. 50, 20–26 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Theriot, J. A. & Mitchison, T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol. 119, 367–377 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Gardel, M. L. et al. Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, K., Ji, L., Applegate, K. T., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, J. et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell 32, 849–861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Calderwood, D. A. et al. The talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hemmings, L. et al. Talin contains three actin-binding sites each of which is adjacent to a vinculin-binding site. J. Cell Sci. 109, 2715–2726 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R. & Sheetz, M. P. Talin1 is critical for force-dependent reinforcement of initial integrin–cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163, 409–419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lim, J. et al. An essential role for talin during αMβ2-mediated phagocytosis. Mol. Biol. Cell 18, 976–985 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Humphries, J. D. et al. Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179, 1043–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. & Waterman, C. M. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thievessen, I. et al. Vinculin–actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 202, 163–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paone, C. et al. The tyrosine kinase Pyk2 contributes to complement-mediated phagocytosis in murine macrophages. J. Innate Immun. 8, 437–451 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi, Y. et al. Protein-tyrosine kinase Syk is required for pathogen engulfment in complement-mediated phagocytosis. Blood 107, 4554–4562 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pelham, R. J. & Wang, Y. L. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. & Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron 38, 824–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Amir, A., Babaeipour, F., McIntosh, D. B., Nelson, D. R. & Jun, S. Bending forces plastically deform growing bacterial cell walls. Proc. Natl Acad. Sci. USA 111, 5778–5783 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Deng, Y., Sun, M. & Shaevitz, J. W. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107, 158101 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Lam, W. A., Rosenbluth, M. J. & Fletcher, D. A. Chemotherapy exposure increases leukemia cell stiffness. Blood 109, 3505–3508 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nikolaev, N. I., Müller, T., Williams, D. J. & Liu, Y. Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J. Biomech. 47, 625–630 (2014).

    Article  PubMed  Google Scholar 

  44. Swaminathan, V. et al. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075–5080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Belin, B. J., Goins, L. M. & Mullins, R. D. Comparative analysis of tools for live cell imaging of actin network architecture. Bioarchitecture 4, 189–202 (2014).

    Article  PubMed  Google Scholar 

  46. Bohdanowicz, M., Cosío, G., Backer, J. M. & Grinstein, S. Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J. Cell Biol. 191, 999–1012 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xia, Y. et al. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 162, 2281–2290 (1999).

    CAS  PubMed  Google Scholar 

  48. Ross, G. D., Cain, J. A. & Lachmann, P. J. Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J. Immunol. 134, 3307–3315 (1985).

    CAS  PubMed  Google Scholar 

  49. Caron, E., Self, A. J. & Hall, A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr. Biol. 10, 974–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Patel, P. C. & Harrison, R. E. Membrane ruffles capture C3bi-opsonized particles in activated macrophages. Mol. Biol. Cell 19, 4628–4639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nolen, B. J. et al. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 460, 1031–1034 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rizvi, S. A. et al. Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16, 1158–1168 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wright, S. D. & Silverstein, S. C. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature 309, 359–361 (1984).

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez-Madrid, F., Simon, P., Thompson, S. & Springer, T. A. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J. Exp. Med. 158, 586–602 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mendoza, M. C., Besson, S. & Danuser, G. Quantitative fluorescent speckle microscopy (QFSM) to measure actin dynamics. Curr. Protoc. Cytom. 2, 2.18 (2012).

    Google Scholar 

  58. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E. & Block, M. R. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Pixley, F. J. Macrophage migration and its regulation by CSF-1. Int. J. Cell Biol. 2012, 501962 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Linder, S. et al. The polarization defect of Wiskott–Aldrich syndrome macrophages is linked to dislocalization of the Arp2/3 complex. J. Immunol. 165, 221–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Martiel, J.-L. et al. Measurement of cell traction forces with ImageJ. Methods Cell Biol. 125, 269–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Oliver, J. M., Burg, D. L., Wilson, B. S., McLaughlin, J. L. & Geahlen, R. L. Inhibition of mast cell Fc epsilon R1-mediated signaling and effector function by the Syk-selective inhibitor, piceatannol. J. Biol. Chem. 269, 29697–29703 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Hanke, J. H. et al. Discovery of a novel, potent and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J. Biol. Chem. 271, 695–701 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Liu, T.-J. et al. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol. Cancer Ther. 6, 1357–1367 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Straight, A. F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, Y., Hoppe, A. D. & Swanson, J. A. Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc. Natl Acad. Sci. USA 107, 19332–19337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gupton, S. L., Eisenmann, K., Alberts, A. S. & Waterman-Storer, C. M. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120, 3475–3487 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Choi, C. K. et al. Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10, 1039–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Carisey, A. et al. Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr. Biol. 23, 271–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jurado, C., Haserick, J. R. & Lee, J. Slipping or gripping? Fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin. Mol. Biol. Cell 16, 507–518 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Beningo, K. A. & Wang, Y. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115, 849–856 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Cornel, A. M., van Til, N. P., Boelens, J. J. & Nierkens, S. Strategies to genetically modulate dendritic cells to potentiate anti-tumor responses in hematologic malignancies. Front. Immunol. 9, 982 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sneddon, I. N. Fourier Transforms Ch. 10 (McGraw-Hill, 1951).

Download references

Author information

Authors and Affiliations

Authors

Contributions

V.J. designed the research, performed experiments, analysed the data and wrote the manuscript. A.X.C.-R. performed the experiments and analysed the data. C.M.W. designed and supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Clare M. Waterman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CR-mediated phagocytosis is blocked by anti-integrin antibodies and divalent cation chelation.

a, time-lapse spinning disc confocal microscopy images of a human THP-1 macrophage expressing F-tractin-mCherry during phagocytosis of iC3b-opsonized 5.15 µm polystyrene microspheres, representative of three independent experiments. Elapsed time shown in seconds. b-e, binding index (fraction of cell-associated particles relative to PMA control), phagocytosis index (fraction of internalized particles relative to PMA control) and phagocytosis efficiency (percentage of internalized particles relative to all cell-associated particles) after 1 hour incubation of iC3b-opsonized or BSA-coated 5.15 µm polystyrene beads (b), complement-opsonized or unopsonized sheep red blood cells (c), complement-opsonized or unopsonized sheep red blood cells previously fixed with glutaraldehyde (d) and complement-opsonized or unopsonized zymosan A (e). RAW 264.7 macrophages were preincubated with 10 µg/mL LPS, or 150 ng/mL PMA, without or with blocking antibodies to αM or β2 integrins. Error bars represent SEM. P values were calculated for each individual condition compared the PMA control using two tailed Mann-Whitney test. b, iC3b-beads untreated n = 28 fields, LPS n = 30 fields, PMA n = 47 fields, PMA + anti αM n = 44 fields, PMA + anti β2 n = 30 fields; BSA-beads n = 25 fields, from 3 independent experiments. c, opsonized sRBCs n = 30 fields except, PMA + anti β2 n = 20 fields; unopsonized sRBCs n = 20 fields, from 3 independent experiments. d, opsonized fixed-sRBCs with LPS, PMA, or PMA + anti αM: n = 25 fields, others n = 20 fields, form 3 independent experiments. e, opsonized zymosan with PMA: n = 10 fields, others n = 5 fields. Elapsed times are in seconds. Numerical source data are provided in Statistical Source Extended Data Fig. 1.

Extended Data Fig. 2 The formin mDia1, but not mDia2, is transiently recruited to the forming phagosome.

Time-lapse spinning disc confocal microscopy images of RAW 264.7 macrophages expressing mDia1-mEmerald (top) or mDia2-mEmerald (bottom), during phagocytosis of iC3b-opsonized 5.15 µm polystyrene microspheres. Representative examples from three independent experiments. Elapsed time are in seconds.

Extended Data Fig. 3 Formation of a frustrated phagocytic cup requires integrin engagement.

Time-lapse TIRF microscopy of a RAW 264.7 macrophage expressing EGFP-F-tractin during formation of a frustrated phagocytic cup on an anti-αMβ2-coated coverslip (top) or on an isotype control antibody (bottom). Representative examples from three independent experiments. Elapsed time are in seconds.

Supplementary information

Reporting Summary

Supplementary Video 1

Actin dynamics during CR-mediated phagocytosis of diverse target particles. Time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages expressing EGFP-F-tractin to mark actin filaments during phagocytosis of iC3b-opsonized 4.19 µm polystyrene Flash Red microspheres (left, iC3b-bead), complement-opsonized zymosan A labelled with Texas Red (middle, Comp-zymosan), complement-opsonized sheep red blood cells labelled with Alexa Fluor 647 (right, Comp-sRBC). A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Representative examples from more than 10 phagocytosis events over at least 3 independent experiments.

Supplementary Video 2

Comparison of actin dynamics during CR-mediated phagocytosis upon CR activation by PMA or LPS. Time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages expressing EGFP-F-tractin to mark actin filaments during phagocytosis of iC3b-opsonized 4.19 µm polystyrene Flash Red microspheres (iC3b-bead), upon activation by PMA 150 ng/ml or LPS 10 µg/ml. A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Representative examples from 3 independent experiments.

Supplementary Video 3

Membrane dynamics in 3D during CR-mediated phagocytosis. Three-dimensional time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages expressing EGFP-CAAX to mark the plasma membrane during phagocytosis of iC3b-opsonized 4.19 µm polystyrene Flash Red microspheres. A single confocal image plane (X-Y, left) and a reconstructed axial image plane (X-Z, right) corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Representative examples from 4 independent experiments.

Supplementary Video 4

Actin dynamics during CR-mediated phagocytosis with perturbation of actin nucleators. Time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages expressing EGFP-F-tractin to mark actin filaments during phagocytosis of iC3b-opsonized 5.15 µm polystyrene microspheres: untreated (control, left), 100 µM CK-666 (CK-666, middle), 20 µM SMIFH2 (SMIFH2, right). A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Representative examples from 3 independent experiments.

Supplementary Video 5

Recruitment dynamics of ArpC2 and mDia1 during CR-mediated phagocytosis. Time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages co-expressing mEmerald-ArpC2 (top left and green) or mEmerald-mDia1 (bottom left and green) and mCherry-F-tractin (middle panels and red) during phagocytosis of iC3b-opsonized 5.15 µm polystyrene microspheres. A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Representative examples from 4 independent experiments.

Supplementary Video 6

Formation of a frustrated phagocytic cup requires integrin engagement. Time-lapse TIRF microscopy of a RAW 264.7 macrophage expressing EGFP-F-tractin during formation of a frustrated phagocytic cup on an anti-αMβ2-coated coverslip (Anti-Mac-1, left) or on an isotype control antibody (right). Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 7

Arp2/3 dynamics during CR-mediated frustrated phagocytosis. Time-lapse TIRF microscopy of a RAW 264.7 macrophage co-expressing and mCherry-ArpC2 (left and red) mEmerald-mDia1 (middle and green) during formation of a ‘frustrated phagocytic cup’ on anti-αMβ2 antibody-coated coverslip. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 8

Super-resolution microscopy of actin dynamics during CR-mediated frustrated phagocytosis. Time-lapse TIRF-SIM of a RAW 264.7 macrophage expressing mNeonGreen-F-tractin during formation of a ‘frustrated phagocytic cup’ on anti-αMβ2 antibody-coated coverslip. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 9

Fluorescent speckle microscopy of actin dynamics during CR-mediated phagocytosis. A RAW 264.7 macrophage expressing green-to-red photoconvertible Actin-mEos3.2 during phagocytosis of iC3b-opsonized 5.15 µm polystyrene microspheres was exposed to a low level of 405 nm light and photo-converted red fluorescent actin recorded by time-lapse spinning disc confocal microscopy. A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Images in the time-lapse were aligned relative to the negative image of the bead and individual fluorescent speckles were detected (red circles) and tracked (red lines) with qFSM automated image analysis software. Elapsed time shown in minutes: seconds. Representative example from 4 independent experiments.

Supplementary Video 10

Actin dynamics during frustrated phagocytosis in the absence of integrin engagement. Time-lapse TIRF microscopy of a RAW 264.7 macrophage expressing mCherry-F-tractin during formation of a ‘frustrated phagocytic cup’ on a poly-l-lysine-coated coverslip. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 11

Adhesion dynamics during CR-mediated frustrated phagocytosis. Time-lapse TIRF microscopy of a RAW 264.7 macrophage expressing mEmerald-Paxillin (green) and mCherry-F-tractin (red) during formation of a ‘frustrated phagocytic cup’ on anti-αMβ2 antibody-coated coverslip. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 12

β2 integrin dynamics during CR-mediated frustrated phagocytosis. Time-lapse TIRF microscopy of a RAW 264.7 macrophage expressing co-expressing αM, β2-YFP (green) and mApple-paxillin (red) during formation of a ‘frustrated phagocytic cup’ on anti-αMβ2 antibody-coated coverslip. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 13

Traction stress dynamics during CR-mediated frustrated phagocytosis with inhibition of Syk kinase or overexpression of talin head domain. Top panels: Time lapse spinning disc confocal microscopy of RAW 264.7 macrophages expressing EGFP-F-tractin with (middle) or without (left) treatment with 50 µM piceatannol, or expressing mEmerald-Talin Head (right), during frustrated phagocytosis on anti-αMβ2 antibody-coated 4 kPa polyacrylamide gels. A single confocal image plane at the gel surface is shown over time (minutes: seconds) in each panel. Bottom panels: Time-lapse of stress vectors computed from images of fluorescent beads embedded in the polyacrylamide gel substrate, pseudocolor scale and vector lengths represent the magnitude of traction stresses. Elapsed time shown in minutes: seconds. Representative examples from 3 independent experiments.

Supplementary Video 14

Effect of of talin head domain over-expression on CR-mediated phagocytosis. Time-lapse spinning disc confocal microscopy of RAW 264.7 macrophages co-expressing mEmerald-talin head domain (green) during phagocytosis of iC3b-opsonized 4.19 µm Flash Red polystyrene microspheres (red). A single confocal image plane corresponding to the center of particle is shown over time (minutes: seconds) in each panel. Elapsed time shown in minutes: seconds. Representative example from 3 independent experiments.

Supplementary Video 15

Vinculin localization to the phagosome is Syk kinase dependent. Time-lapse of vinculin concentration relative to a soluble marker from spinning-disk microscopy during phagocytosis of iC3b-opsonized 5.15 µm polystyrene beads by RAW 264.7 macrophages expressing vinculin-mEmerald and FusionRed, treated with DMSO (control), ROCK inhibitor (Y-27632, 10 µM), or Syk inhibitor (piceatannol, 50 µM). Heat maps were generated by subtracting mean-normalized fusion red intensity from mean-normalized vinculin-mEmerald intensity. Elapsed time in minutes:seconds. Representative examples from 3 independent experiments.

Supplementary Video 16

Formation of frustrated phagocytic cups is enhanced by target stiffness. Time-lapse spinning disk confocal microscopy of RAW 264.7 macrophages expressing F-tractin-EGFP during spreading on anti-αMβ2-coated 0.4 kPa, 4 kPa, and 30 kPa polyacrylamide gel substrates. Elapsed time shown in hours:minutes. Representative examples from 3 independent experiments.

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. 6

Statistical Source Data

Source Data Fig. 6

Unprocessed Western Blots

Source Data Fig. 7

Statistical Source Data

Source Data Extended Fig. 1

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaumouillé, V., Cartagena-Rivera, A.X. & Waterman, C.M. Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat Cell Biol 21, 1357–1369 (2019). https://doi.org/10.1038/s41556-019-0414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0414-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing