Super-resolution microscopy demystified

Super-resolution microscopy (SRM) bypasses the diffraction limit, a physical barrier that restricts the optical resolution to roughly 250 nm and was previously thought to be impenetrable. SRM techniques allow the visualization of subcellular organization with unprecedented detail, but also confront biologists with the challenge of selecting the best-suited approach for their particular research question. Here, we provide guidance on how to use SRM techniques advantageously for investigating cellular structures and dynamics to promote new discoveries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Basic principles of SRM.
Fig. 2: Inherent trade-offs in SRM.
Fig. 3: Decision tree for selecting SRM techniques.
Fig. 4: Application examples of SRM to inform biology.

References

  1. 1.

    Pawley, J. B. Handbook of biological confocal microscopy. 3rd edn, (Springer US, New York, 2006).

    Google Scholar 

  2. 2.

    Sauer, M. & Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117, 7478–7509 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Fornasiero, E. F. & Opazo, F. Super-resolution imaging for cell biologists: concepts, applications, current challenges and developments. Bioessays 37, 436–451 (2015).

    PubMed  Google Scholar 

  4. 4.

    Turkowyd, B., Virant, D. & Endesfelder, U. From single molecules to life: microscopy at the nanoscale. Anal. Bioanal. Chem. 408, 6885–6911 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    CAS  Google Scholar 

  7. 7.

    Heintzmann, R. & Huser, T. Super-resolution structured illumination microscopy. Chem. Rev. 117, 13890–13908 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15, 1011–1019 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Muller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    PubMed  Google Scholar 

  13. 13.

    York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9, 749–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl Acad. Sci. USA 110, 21000–21005 (2013).

    CAS  PubMed  Google Scholar 

  15. 15.

    York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Shao, L., Kner, P., Rego, E. H. & Gustafsson, M. G. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8, 1044–1046 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    Fiolka, R., Shao, L., Rego, E. H., Davidson, M. W. & Gustafsson, M. G. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl Acad. Sci. USA 109, 5311–5315 (2012).

    CAS  PubMed  Google Scholar 

  18. 18.

    Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc. 12, 988–1010 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    De Luca, G. M. et al. Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644–2656 (2013).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Huang, X. S. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451–459 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Wegel, E. et al. Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci. Rep. 6, 27290 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Göttfert, F. et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys. J. 105, L01–03 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bottanelli, F. et al. Two-colour live-cell nanoscale imaging of intracellular targets. Nat. Commun. 7, 10778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Urban, N. T., Willig, K. I., Hell, S. W. & Nagerl, U. V. STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys. J. 101, 1277–1284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Heine, J. et al. Adaptive-illumination STED nanoscopy. Proc. Natl Acad. Sci. USA 114, 9797–9802 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012).

    PubMed  Google Scholar 

  27. 27.

    van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Google Scholar 

  28. 28.

    Demmerle, J., Wegel, E., Schermelleh, L. & Dobbie, I. M. Assessing resolution in super-resolution imaging. Methods 88, 3–10 (2015).

    CAS  PubMed  Google Scholar 

  29. 29.

    Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    CAS  PubMed  Google Scholar 

  30. 30.

    Baddeley, D. & Bewersdorf, J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. Annu. Rev. Biochem. 87, 965–989 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2008).

    CAS  PubMed  Google Scholar 

  32. 32.

    Burgert, A., Letschert, S., Doose, S. & Sauer, M. Artifacts in single-molecule localization microscopy. Histochem. Cell Biol. 144, 123–131 (2015).

    CAS  PubMed  Google Scholar 

  33. 33.

    Ishitsuka, Y., Nienhaus, K. & Nienhaus, G. U. Photoactivatable fluorescent proteins for super-resolution microscopy. Methods Mol. Biol. 1148, 239–260 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. Carbocyanine dyes as efficient reversible single-molecule optical switch. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    CAS  PubMed  Google Scholar 

  35. 35.

    Jones, S. A., Shim, S. H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Wombacher, R. et al. Live-cell super-resolution imaging with trimethoprim conjugates. Nat. Methods 7, 717–719 (2010).

    CAS  PubMed  Google Scholar 

  37. 37.

    Takakura, H. et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol. 35, 773–780 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 7, 12471 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  PubMed  Google Scholar 

  41. 41.

    Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    CAS  PubMed  Google Scholar 

  42. 42.

    Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chang, B. J., Perez Meza, V. D. & Stelzer, E. H. K. csiLSFM combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm. Proc. Natl Acad. Sci. USA 114, 4869–4874 (2017).

    CAS  PubMed  Google Scholar 

  45. 45.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Chang, J. B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Cahoon, C. K. et al. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc. Natl Acad. Sci. USA 114, E6857–E6866 (2017).

    CAS  Google Scholar 

  50. 50.

    Wang, Y. F. et al. Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nat. Protoc. 13, 1869–1895 (2018).

    CAS  Google Scholar 

  51. 51.

    Stelzer, E. H. K. Contrast, resolution, pixelation, dynamic range and signal‐to‐noise ratio: fundamental limits to resolution in fluorescence light microscopy. J. Microsc. 189, 15–24 (1998).

    Google Scholar 

  52. 52.

    Endesfelder, U. et al. Chemically induced photoswitching of fluorescent probes: a general concept for super-resolution microscopy. Molecules 16, 3106–3118 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Fernandez-Suarez, M. & Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–943 (2008).

    CAS  PubMed  Google Scholar 

  54. 54.

    Yang, Z. et al. Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem. Soc. Rev. 45, 4651–4667 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Uno, S. N. et al. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy 64, 263–277 (2015).

    CAS  PubMed  Google Scholar 

  56. 56.

    Nienhaus, K. & Nienhaus, G. U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 43, 1088–1106 (2014).

    CAS  PubMed  Google Scholar 

  57. 57.

    van de Linde, S. et al. Investigating cellular structures at the nanoscale with organic fluorophores. Chem. Biol. 20, 8–18 (2013).

    PubMed  Google Scholar 

  58. 58.

    Stepanenko, O. V., Stepanenko, O. V., Kuznetsova, I. M., Verkhusha, V. V. & Turoverov, K. K. β-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Int. Rev. Cell Mol. Biol. 302, 221–278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Lukinavicius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013).

    CAS  PubMed  Google Scholar 

  60. 60.

    Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    CAS  PubMed  Google Scholar 

  61. 61.

    Yan, Q. & Bruchez, M. P. Advances in chemical labeling of proteins in living cells. Cell Tissue Res. 360, 179–194 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Grimm, J. B. et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 13, 985–988 (2016).

    CAS  PubMed  Google Scholar 

  63. 63.

    Shim, S. H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl Acad. Sci. USA 109, 13978–13983 (2012).

    CAS  PubMed  Google Scholar 

  64. 64.

    Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    CAS  Google Scholar 

  65. 65.

    Ries, J., Kaplan, C., Platonova, E., Eghlidi, H. & Ewers, H. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods 9, 582–584 (2012).

    CAS  PubMed  Google Scholar 

  66. 66.

    Mikhaylova, M. et al. Resolving bundled microtubules using anti-tubulin nanobodies. Nat. Commun. 6, 7933 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Melak, M., Plessner, M. & Grosse, R. Actin visualization at a glance. J. Cell Sci. 130, 525–530 (2017).

    PubMed  Google Scholar 

  68. 68.

    Simonson, P. D., Rothenberg, E. & Selvin, P. R. Single-molecule-based super-resolution images in the presence of multiple fluorophores. Nano Lett. 11, 5090–5096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhang, G., Zheng, S., Liu, H. & Chen, P. R. Illuminating biological processes through site-specific protein labeling. Chem. Soc. Rev. 44, 3405–3417 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Stanly, T. A. et al. Critical importance of appropriate fixation conditions for faithful imaging of receptor microclusters. Biol. Open 5, 1343–1350 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ehmann, N. et al. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5, 4650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Waldchen, S., Lehmann, J., Klein, T., van de Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lando, D. et al. Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. Open Biol. 2, 120078 (2012).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).

    PubMed  Google Scholar 

  76. 76.

    Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Westphal, V. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008).

    CAS  PubMed  Google Scholar 

  78. 78.

    Galiani, S. et al. Super-resolution microscopy reveals compartmentalization of peroxisomal membrane proteins. J. Biol. Chem. 291, 16948–16962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Berning, S., Willig, K. I., Steffens, H., Dibaj, P. & Hell, S. W. Nanoscopy in a living mouse brain. Science 335, 551 (2012).

    CAS  PubMed  Google Scholar 

  80. 80.

    Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2009).

    CAS  PubMed  Google Scholar 

  81. 81.

    Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 1, 965–976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).

    CAS  PubMed  Google Scholar 

  84. 84.

    Conduit, P. T. et al. A molecular mechanism of mitotic centrosome assembly in Drosophila. eLife 3, e03399 (2014).

    PubMed  PubMed Central  Google Scholar 

  85. 85.

    Burnette, D. T. et al. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J. Cell Biol. 205, 83–96 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Baddeley, D. et al. Measurement of replication structures at the nanometer scale using super-resolution light microscopy. Nucleic Acids Res. 38, e8 (2010).

    CAS  PubMed  Google Scholar 

  87. 87.

    Chagin, V. O. et al. 4D Visualization of replication foci in mammalian cells corresponding to individual replicons. Nat. Commun. 7, 11231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenet. Chromatin 7, 8 (2014).

    Google Scholar 

  89. 89.

    Ball, G. et al. SIMcheck: A toolbox for successful super-resolution sructured illumination microscopy. Sci. Rep. 5, 15915 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Culley, S. et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods 15, 263–266 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Nieuwenhuizen, R. P. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Tortarolo, G., Castello, M., Diaspro, A., Koho, S. & Vicidomini, G. Evaluating image resolution in stimulated emission depletion microscopy. Optica 5, 32–35 (2018).

    CAS  Google Scholar 

  93. 93.

    Steinhauer, C., Jungmann, R., Sobey, T. L., Simmel, F. C. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Edit. 48, 8870–8873 (2009).

    CAS  Google Scholar 

  94. 94.

    Schmied, J. J. et al. DNA origami-based standards for quantitative fluorescence microscopy. Nat. Protoc. 9, 1367–1391 (2014).

    CAS  PubMed  Google Scholar 

  95. 95.

    Komis, G. et al. Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10, 1248–1263 (2015).

    CAS  PubMed  Google Scholar 

  96. 96.

    Kraus, F. et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. 12, 1011–1028 (2017).

    CAS  PubMed  Google Scholar 

  97. 97.

    Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Gould, T. J., Verkhusha, V. V. & Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291–308 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Lovelace, M. D. et al. The RhoGAP protein ARHGAP18/SENEX localizes to microtubules and regulates their stability in endothelial cells. Mol. Biol. Cell 28, 1066–1078 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Chang, G. H. et al. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases 5, 1–15 (2014).

    CAS  PubMed  Google Scholar 

  101. 101.

    Crittenden, J. R. et al. Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc. Natl Acad. Sci. USA 113, 11318–11323 (2016).

    CAS  Google Scholar 

  102. 102.

    Nozaki, T. et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67, 282–293 (2017).

    CAS  PubMed  Google Scholar 

  103. 103.

    Große, L. et al. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J. 35, 402–413 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. 104.

    Ramdas Nair, A. et al. The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Rep. 14, 1100–1113 (2016).

    CAS  PubMed  Google Scholar 

  105. 105.

    Boettiger, A. N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Cattoni, D. I. et al. Single-cell absolute contact probability detection reveals chromosomes are organized by multiple low-frequency yet specific interactions. Nat. Commun. 8, 1753 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Ricci, M. A., Manzo, C., Garcia-Parajo, M. F., Lakadamyali, M. & Cosma, M. P. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160, 1145–1158 (2015).

    CAS  PubMed  Google Scholar 

  108. 108.

    Wurm, C. A. et al. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc. Natl Acad. Sci. USA 108, 13546–13551 (2011).

    CAS  PubMed  Google Scholar 

  109. 109.

    Mönkemoller, V., Oie, C., Hubner, W., Huser, T. & McCourt, P. Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations. Sci. Rep. 5, 16279 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Fritzsche, M. et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci. Adv. 3, e1603032 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Colin-York, H. et al. Super-resolved traction force microscopy (STFM). Nano Lett. 16, 2633–2638 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Jung, Y. et al. Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies. Proc. Natl Acad. Sci. USA 113, E5916–E5924 (2016).

    CAS  PubMed  Google Scholar 

  113. 113.

    Poulter, N. S. et al. Platelet actin nodules are podosome-like structures dependent on Wiskott-Aldrich syndrome protein and ARP2/3 complex. Nat. Commun. 6, 7254 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    CAS  PubMed  Google Scholar 

  115. 115.

    Saka, S. & Rizzoli, S. O. Super-resolution imaging prompts re-thinking of cell biology mechanisms: selected cases using stimulated emission depletion microscopy. Bioessays 34, 386–395 (2012).

    PubMed  Google Scholar 

  116. 116.

    Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014).

    Google Scholar 

  117. 117.

    Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express 20, 20998–21009 (2012).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Huang, F. et al. Ultra-high resolution 3D imaging of whole cells. Cell 166, 1028–1040 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    CAS  PubMed  Google Scholar 

  120. 120.

    Gao, L. et al. Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens. Cell 151, 1370–1385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Gustavsson, A. K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9, 123 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Geissbuehler, S. et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat. Commun. 5, 5830 (2014).

    PubMed  PubMed Central  Google Scholar 

  123. 123.

    Abrahamsson, S. et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10, 60–63 (2013).

    CAS  PubMed  Google Scholar 

  124. 124.

    Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–143 (2012).

    CAS  PubMed  Google Scholar 

  125. 125.

    Chmyrov, A. et al. Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods 10, 737–740 (2013).

    CAS  PubMed  Google Scholar 

  126. 126.

    Chmyrov, A. et al. Achromatic light patterning and improved image reconstruction for parallelized RESOLFT nanoscopy. Sci. Rep. 7, 44619 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Chang, Y. W. et al. Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods 11, 737–739 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Kaufmann, R. et al. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 14, 4171–4175 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Liu, B. et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 5, 13017 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Conduit, P. T., Wainman, A., Novak, Z. A., Weil, T. T. & Raff, J. W. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP. eLife 4, e08483 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131.

    Tonnesen, J., Katona, G., Rozsa, B. & Nagerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014).

    CAS  PubMed  Google Scholar 

  132. 132.

    Deng, S. et al. Effects of donor and acceptor’s fluorescence lifetimes on the method of applying Forster resonance energy transfer in STED microscopy. J. Microsc. 269, 59–65 (2018).

    CAS  PubMed  Google Scholar 

  133. 133.

    Winckler, P. et al. Identification and super-resolution imaging of ligand-activated receptor dimers in live cells. Sci. Rep. 3, 2387 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. 134.

    Honigmann, A. et al. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells. Nat. Commun. 5, 5412 (2014).

    CAS  PubMed  Google Scholar 

  135. 135.

    Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. 136.

    Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S. & Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5, e13065 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. 138.

    Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: Super resolution single molecule microscopy by deep learning. Optica 5, 458–464 (2018).

    CAS  Google Scholar 

  139. 139.

    Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol 36, 460–468 (2018).

    CAS  PubMed  Google Scholar 

  140. 140.

    Kraus, O. Z. et al. Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13, 924 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. 141.

    Williams, E. et al. The image data resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Ma, H., Fu, R., Xu, J. & Liu, Y. A simple and cost-effective setup for super-resolution localization microscopy. Sci. Rep. 7, 1542 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. 143.

    Kwakwa, K. et al. easySTORM: a robust, lower-cost approach to localisation and TIRF microscopy. J. Biophotonics 9, 948–957 (2016).

    PubMed  Google Scholar 

  144. 144.

    Holm, T. et al. A blueprint for cost-efficient localization microscopy. ChemPhysChem 15, 651–654 (2014).

    CAS  PubMed  Google Scholar 

  145. 145.

    Diekmann, R. et al. Chip-based wide field-of-view nanoscopy. Nat. Photonics 11, 322–328 (2017).

    CAS  Google Scholar 

  146. 146.

    Diekmann, R. et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nat. Commun. 7, 13711 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Sheppard, C. J. R., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889–2892 (2013).

    PubMed  Google Scholar 

  148. 148.

    Huff, J. The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nat. Methods 12, 1205 (2015).

    Google Scholar 

  149. 149.

    Korobchevskaya, K., Colin-York, H., Lagerholm, B. & Fritzsche, M. Exploring the potential of Airyscan microscopy for live cell imaging. Photonics 4, 41 (2017).

    Google Scholar 

  150. 150.

    Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. 151.

    Hofmann, M., Eggeling, C., Jakobs, S. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl Acad. Sci. USA 102, 17565–17569 (2005).

    CAS  PubMed  Google Scholar 

  152. 152.

    Grotjohann, T. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478, 204–208 (2011).

    CAS  PubMed  Google Scholar 

  153. 153.

    Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Holden, S. J., Uphoff, S. & Kapanidis, A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279–280 (2011).

    CAS  PubMed  Google Scholar 

  155. 155.

    Marsh, R. J. et al. Artifact-free high-density localization microscopy analysis. Nat. Methods 15, 689–692 (2018).

    CAS  PubMed  Google Scholar 

  156. 156.

    Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Pavani, S. R. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA 106, 2995–2999 (2009).

    CAS  PubMed  Google Scholar 

  158. 158.

    Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008).

    CAS  PubMed  Google Scholar 

  159. 159.

    Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. Binding-activated localization microscopy of DNA structures. Nano Lett. 11, 4008–4011 (2011).

    CAS  PubMed  Google Scholar 

  160. 160.

    Szczurek, A. et al. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Res. 45, e56 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Liu, W. et al. Breaking the axial diffraction limit: a guide to axial super-resolution fluorescence microscopy. Laser Photonics Rev. https://doi.org/10.1002/lpor.201700333 (2018).

Download references

Acknowledgements

We apologize to the many researchers whose work we were unable to cite owing to space constraints. Furthermore, we thank I. Dobbie, C. Lagerholm and J. Demmerle for their valuable comments on the manuscript. L.S. is supported by the Wellcome Trust Strategic Award 107457 supporting advanced microscopy at Micron Oxford. L.S. and T.H. acknowledge support by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 766181. G.D. is supported with funding for External Collaborative Research. M.S. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center 166 ReceptorLight (projects A04 and B04). C.E. acknowledges support by the Medical Research Council (grant number MC_UU_12010/unit programs G0902418 and MC_UU_12025, grant MR/K01577X/1), Wellcome Trust (grant 104924/14/Z/14 and Strategic Award 107457), DFG (Research unit FOR 1905) and Oxford internal funds (EPA Cephalosporin Fund and John Fell Fund).

Author information

Affiliations

Authors

Contributions

L.S., A.F. and G.D. provided the initial concept, design and drafting of the manuscript with contributions from all authors. L.S. and G.D. prepared the figures. L.S., T.H and G.D. revised and finalized the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lothar Schermelleh or Gregor P. C. Drummen.

Ethics declarations

Competing interests

G.D. is partially exempted from his duties at BNS to pursue fundamental scientific research. All other authors declare no competing interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schermelleh, L., Ferrand, A., Huser, T. et al. Super-resolution microscopy demystified. Nat Cell Biol 21, 72–84 (2019). https://doi.org/10.1038/s41556-018-0251-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing