Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy

Abstract

Spinal muscular atrophy (SMA) is caused by mutations in SMN1. SMN2 is a paralogous gene with a C•G-to-T•A transition in exon 7, which causes this exon to be skipped in most SMN2 transcripts, and results in low levels of the protein survival motor neuron (SMN). Here we show, in fibroblasts derived from patients with SMA and in a mouse model of SMA that, irrespective of the mutations in SMN1, adenosine base editors can be optimized to target the SMN2 exon-7 mutation or nearby regulatory elements to restore the normal expression of SMN. After optimizing and testing more than 100 guide RNAs and base editors, and leveraging Cas9 variants with high editing fidelity that are tolerant of different protospacer-adjacent motifs, we achieved the reversion of the exon-7 mutation via an A•T-to-G•C edit in up to 99% of fibroblasts, with concomitant increases in the levels of the SMN2 exon-7 transcript and of SMN. Targeting the SMN2 exon-7 mutation via base editing or other CRISPR-based methods may provide long-lasting outcomes to patients with SMA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of adenine base editing to correct SMN2 exon 7 C6T.
Fig. 2: SMN2 C6T editing in fibroblasts derived from patients with SMA.
Fig. 3: Analysis of SMN2 C6T base editing specificity.
Fig. 4: AAV-mediated delivery of base editors for in vivo SMN2 C6T editing.

Similar content being viewed by others

Data availability

Plasmids from this study have been made available through Addgene (https://www.addgene.org/browse/article/28233786/). Primary datasets are available in Supplementary Tables 1, 2, 6 and 7. Sequencing datasets were deposited with the NCBI Sequence Read Archive (PRJNA1014715). The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Groen, E. J. N., Talbot, K. & Gillingwater, T. H. Advances in therapy for spinal muscular atrophy: promises and challenges. Nat. Rev. Neurol. 14, 214–224 (2018).

    Article  PubMed  Google Scholar 

  2. Bergin, A. et al. Identification and characterization of a mouse homologue of the spinal muscular atrophy-determining gene, survival motor neuron. Gene 204, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Ogino, S. & Wilson, R. B. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum. Genet. 111, 477–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Crawford, T. O. et al. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS ONE 7, e33572 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Feldkotter, M., Schwarzer, V., Wirth, R., Wienker, T. F. & Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 70, 358–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Mercuri, E. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Sturm, S. et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br. J. Clin. Pharm. 85, 181–193 (2019).

    Article  CAS  Google Scholar 

  11. Darras, B. T. et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N. Engl. J. Med. 385, 427–435 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Baranello, G. et al. Risdiplam in type 1 spinal muscular atrophy. N. Engl. J. Med. 384, 915–923 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Ratni, H., Scalco, R. S. & Stephan, A. H. Risdiplam, the first approved small molecule splicing modifier drug as a blueprint for future transformative medicines. ACS Med. Chem. Lett. 12, 874–877 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Vivo, D. C. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul. Disord. 29, 842–856 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lipnick, S. L. et al. Systemic nature of spinal muscular atrophy revealed by studying insurance claims. PLoS ONE 14, e0213680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nery, F. C. et al. Impaired kidney structure and function in spinal muscular atrophy. Neurol. Genet. 5, e353 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, J. K. et al. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. J. Clin. Invest. 130, 1271–1287 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Thomsen, G. et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat. Med. 27, 1701–1711 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Alves, C. R. R. et al. Whole blood survival motor neuron protein levels correlate with severity of denervation in spinal muscular atrophy. Muscle Nerve 62, 351–357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Alstyne, M. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 24, 930–940 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, M. et al. Seamless genetic conversion of SMN2 to SMN1 via CRISPR/Cpf1 and single-stranded oligodeoxynucleotides in spinal muscular atrophy patient-specific induced pluripotent stem cells. Hum. Gene Ther. 29, 1252–1263 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Li, J. J. et al. Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. Natl Sci. Rev. 7, 92–101 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Miccio, A., Antoniou, P., Ciura, S. & Kabashi, E. Novel genome-editing-based approaches to treat motor neuron diseases: promises and challenges. Mol. Ther. 30, 47–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Singh, N. N., Howell, M. D., Androphy, E. J. & Singh, R. N. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 24, 520–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR–Cas9-edited early human embryos. Proc. Natl Acad. Sci. USA 118, e2004832117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morgens, D. W. et al. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens. Nat. Commun. 8, 15178 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, H. et al. Pol III promoters to express small RNAs: delineation of transcription initiation. Mol. Ther. Nucleic Acids 3, e161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, Z., Harwig, A., Berkhout, B. & Herrera-Carrillo, E. Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: the effect on transcriptional activity and start site usage. Transcription 8, 275–287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S., Bae, T., Hwang, J. & Kim, J. S. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. 18, 218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480 e430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, N. et al. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01792-x (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Miller, S. M. et al. Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nat. Biotechnol. 38, 471–481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chatterjee, P. et al. A Cas9 with PAM recognition for adenine dinucleotides. Nat. Commun. 11, 2474 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cao, X. et al. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Mol. Ther. Nucleic Acids 28, 732–742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kashima, T., Rao, N. & Manley, J. L. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc. Natl Acad. Sci. USA 104, 3426–3431 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh, N. K., Singh, N. N., Androphy, E. J. & Singh, R. N. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol. 26, 1333–1346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cartegni, L., Hastings, M. L., Calarco, J. A., de Stanchina, E. & Krainer, A. R. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am. J. Hum. Genet. 78, 63–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Kashima, T., Rao, N., David, C. J. & Manley, J. L. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum. Mol. Genet. 16, 3149–3159 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kashima, T. & Manley, J. L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Lin, X. et al. Base editing-mediated splicing correction therapy for spinal muscular atrophy. Cell Res. 30, 548–550 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Godena, V. K. & Ning, K. Phosphatase and tensin homologue: a therapeutic target for SMA. Signal Transduct. Target. Ther. 2, 17038 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Little, D. et al. PTEN depletion decreases disease severity and modestly prolongs survival in a mouse model of spinal muscular atrophy. Mol. Ther. 23, 270–277 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kleinstiver, B. P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Lazzarotto, C. R. et al. CHANGE-seq reveals genetic and epigenetic effects on CRISPR–Cas9 genome-wide activity. Nat. Biotechnol. 38, 1317–1327 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cancellieri, S. et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat. Genet. 55, 34–43 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, S. et al. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. Preprint at bioRxiv https://doi.org/10.1101/2022.03.20.485034 (2022).

  67. Koblan, L. W. et al. In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature 589, 608–614 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanlon, K. S. et al. Selection of an efficient AAV vector for robust CNS transgene expression. Mol. Ther. Methods Clin. Dev. 15, 320–332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le, T. T. et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Lutz, C. M. et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J. Clin. Invest. 121, 3029–3041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kray, K. M., McGovern, V. L., Chugh, D., Arnold, W. D. & Burghes, A. H. M. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic ∆7SMA mice. Neurobiol. Dis. 159, 105488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265e216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas, N. H. & Dubowitz, V. The natural history of type I (severe) spinal muscular atrophy. Neuromuscul. Disord. 4, 497–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Swoboda, K. J. et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann. Neurol. 57, 704–712 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yeo, C. J. J. & Darras, B. T. Overturning the paradigm of spinal muscular atrophy as just a motor neuron disease. Pediatr. Neurol. 109, 12–19 (2020).

    Article  PubMed  Google Scholar 

  77. Donadon, I. et al. Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids Res. 47, 7618–7632 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomson, A. K. et al. Survival of motor neurone protein is required for normal postnatal development of the spleen. J. Anat. 230, 337–346 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Cabrera, A. et al. The sound of silence: transgene silencing in mammalian cell engineering. Cell Syst. 13, 950–973 (2022).

    Article  PubMed  Google Scholar 

  80. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and beta-Thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Gao, Y. et al. Systematic characterization of short intronic splicing-regulatory elements in SMN2 pre-mRNA. Nucleic Acids Res. 50, 731–749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Goertsen, D. et al. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25, 106–115 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Ravindra Kumar, S. et al. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17, 541–550 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Stanton, A. C. et al. Systemic administration of novel engineered AAV capsids facilitates enhanced transgene expression in the macaque CNS. Med 4, 31–50 e38 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Rossidis, A. C. et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 24, 1513–1518 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Poirier, A. et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol. Res. Perspect. 6, e00447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhao, X. et al. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 25, 1885–1899 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Passini, M. A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3, 72ra18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Arbab, M. et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science 380, eadg6518 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vicencio, J. et al. Genome editing in animals with minimal PAM CRISPR–Cas9 enzymes. Nat. Commun. 13, 2601 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Christie, K. A. et al. Precise DNA cleavage using CRISPR–SpRYgests. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01492-y (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beharry, A. et al. The AAV9 variant capsid AAV-F mediates widespread transgene expression in nonhuman primate spinal cord after intrathecal administration. Hum. Gene Ther. 33, 61–75 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reilly, A. et al. Central and peripheral delivered AAV9-SMN are both efficient but target different pathomechanisms in a mouse model of spinal muscular atrophy. Gene Ther. 29, 544–554 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the following individuals: C. Tou (ddPCR), E. King and D. Ramos (AAV and mouse tissue extraction discussions), J. Ferreira da Silva and L. Hille (data analysis), L. Ma and N. Kim (cloning), R. Silverstein (coding and data analysis), H. Stutzman (gRNA cloning) and E. Eichelberger, R. Spellman and W. das Neves (cell culture). We acknowledge M. Mabuchi and G. B. Robb for providing purified SpRY and SpRY-HF1 protein (generated as described previously96). This work was supported by a Charles A. King Trust Postdoctoral Research Fellowship, Bank of America, N.A., Co-Trustees (C.R.R.A.); a James L. and Elisabeth C. Gamble Endowed Fund for Neuroscience Research/Mass General Neuroscience Transformative Scholar Award (C.R.R.A.); an MGH Physician/Scientist Development Award (C.R.R.A.); an MGH Executive Committee on Research Fund for Medical Discovery Fundamental Research Fellowship Award (K.A.C.); a Frederick Banting and Charles Best Canadian Institutes of Health Research Doctoral Research Award (A.R.); a St. Jude Children’s Research Hospital Collaborative Research Consortium on Novel Gene Therapies for Sickle Cell Disease (S.Q.T.); a Muscular Dystrophy Association grant 575466 (R.K.); a Muscular Dystrophy Canada grant (R.K.); a Canadian Institutes of Health Research grant PJT-156379 (R.K.); an MGH Innovation Discovery Grant (to C.R.R.A. and B.P.K.); an MGH Executive Committee on Research Howard M. Goodman Fellowship (B.P.K.); and National Institutes of Health grants R01DC017117 (C.A.M.), U01AI157189 (S.Q.T.), U01AI176471 (S.Q.T.), P01HL142494 (B.P.K.) and DP2CA281401 (B.P.K.). Some aspects of schematics in Fig. 4 and Supplementary Figs. 20 and 21 were adapted from vector art provided by Servier Medical Art by Servier, which is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0).

Author information

Authors and Affiliations

Authors

Contributions

C.R.R.A. and B.P.K. conceived of and designed the study. All authors designed, performed or supervised experiments, and/or analysed data. C.R.R.A., L.L.H., K.A.C. and R.M.D. performed cell culture, molecular and biochemical experiments. D.d.l.C and C.A.M. produced AAVs. R.Y., E.R.S., A.B., A.R. and R.K. conducted the in vivo experiments with mice and analysed data. C.R.L. and S.Q.T. designed and performed CHANGE-seq experiments. K.J.S. collected primary human fibroblasts and clinical data. C.R.R.A. and B.P.K. wrote the manuscript with contributions and/or revisions from all authors.

Corresponding authors

Correspondence to Christiano R. R. Alves or Benjamin P. Kleinstiver.

Ethics declarations

Competing interests

C.R.R.A., K.A.C., K.J.S. and B.P.K. are inventors on a patent application filed by Mass General Brigham (MGB) that describes genome engineering technologies to treat SMA. S.Q.T. and C.R.L are co-inventors on a patent application describing the CHANGE-seq method. S.Q.T. is a member of the scientific advisory board of Kromatid, Twelve Bio and Prime Medicine. C.A.M. has a financial interest in Sphere Gene Therapeutics, Chameleon Biosciences and Skylark Bio, companies developing gene therapy platforms. C.A.M.’s interests were reviewed and are managed by MGH and MGB in accordance with their conflict-of-interest policies. C.A.M. has a filed patent application with claims involving the AAV-F capsid. B.P.K. is an inventor on additional patents or patent applications filed by MGB that describe genome engineering technologies. B.P.K. is a consultant for EcoR1 capital and is on the scientific advisory board of Acrigen Biosciences, Life Edit Therapeutics and Prime Medicine. S.Q.T. and B.P.K. have financial interests in Prime Medicine, a company developing therapeutic CRISPR–Cas technologies for gene editing. B.P.K.‘s interests were reviewed and are managed by MGH and MGB in accordance with their conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references.

Reporting Summary

Peer Review File

Supplementary Table 1

CHANGE-seq data summary.

Supplementary Table 2

Off-target sequencing, and results of statistical tests.

Supplementary Table 3

gRNA target sites.

Supplementary Table 4

Plasmids.

Supplementary Table 5

Oligonucleotides and probes.

Supplementary Table 6

Base-editor data.

Supplementary Table 7

gnomAD output for SMN2.

Supplementary Table 8

Primary datasets (SI).

Source data

Figs. 1–4 and Supplementary figures

Source data for all figures and supplementary figures.

Fig. 2

Unprocessed western blots for Fig. 2e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.R.R., Ha, L.L., Yaworski, R. et al. Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nat. Biomed. Eng 8, 118–131 (2024). https://doi.org/10.1038/s41551-023-01132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01132-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing