Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of a small molecule targeting RNA for a specific splicing correction

Abstract

Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5ʹ splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5ʹ splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon–intron junction and converts the weak 5ʹ splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5ʹ splice site bulge repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SMN-C5 recognizes the interface between U1 snRNP and the SMN2 E7 5ʹ SS.
Fig. 2: Structural basis for SMN-C5 selectivity.
Fig. 3: Validation of the SMN-C5 mode of action in cellular models.
Fig. 4: Positive cooperativity between SMN-C5 and the splicing regulatory network.
Fig. 5: The concept of 5ʹ-SS bulge repair.

Similar content being viewed by others

Data availability

The chemical shifts and the atomic coordinates of the RNA duplex with or without SMN-C5 have been deposited in the Biological Magnetic Resonance Bank (BMRB ID: 34311 and 34312) and in the Protein Data Bank (PDB ID: 6HMI and 6HMO). Other data and materials are available from the authors upon reasonable request.

References

  1. Pearn, J. Classification of spinal muscular atrophies. Lancet 1, 919–922 (1980).

    CAS  PubMed  Google Scholar 

  2. Paushkin, S., Gubitz, A. K., Massenet, S. & Dreyfuss, G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr. Opin. Cell Biol. 14, 305–312 (2002).

    CAS  PubMed  Google Scholar 

  3. Rochette, C. F., Gilbert, N. & Simard, L. R. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum. Genet. 108, 255–266 (2001).

    CAS  PubMed  Google Scholar 

  4. Cartegni, L. & Krainer, A. R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).

    CAS  PubMed  Google Scholar 

  5. Kashima, T. & Manley, J. L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).

    CAS  PubMed  Google Scholar 

  6. Burghes, A. H. & Beattie, C. E. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat. Rev. Neurosci. 10, 597–609 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).

    CAS  PubMed  Google Scholar 

  8. Marquis, J. et al. Spinal muscular atrophy: SMN2 pre-mRNA splicing corrected by a U7 snRNA derivative carrying a splicing enhancer sequence. Mol. Ther. 15, 1479–1486 (2007).

    CAS  PubMed  Google Scholar 

  9. Hua, Y., Vickers, T. A., Baker, B. F., Bennett, C. F. & Krainer, A. R. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 5, e73 (2007).

    PubMed  PubMed Central  Google Scholar 

  10. Rogalska, M. E. et al. Therapeutic activity of modified U1 core spliceosomal particles. Nat. Commun. 7, 11168 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Lopez, A. et al. Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat. Commun. 9, 2032 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    CAS  PubMed  Google Scholar 

  13. Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).

    CAS  PubMed  Google Scholar 

  14. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beusch, I., Barraud, P., Moursy, A., Clery, A. & Allain, F. H. Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. Elife 6, e25736 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Hache, M. et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J. Child Neurol. 31, 899–906 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. Foust, K. D. et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 28, 271–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vigevani, L. & Valcarcel, J. A splicing magic bullet. Science 345, 624–625 (2014).

    CAS  PubMed  Google Scholar 

  20. Cully, M. Neuromuscular disorders: beefing up the right splice variant to treat spinal muscular atrophy. Nat. Rev. Drug Discov. 13, 725 (2014).

    CAS  PubMed  Google Scholar 

  21. Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  22. Schneider, R. CIM Journal Club: gene therapy for spinal muscular atrophy Comment on Mendell et al. N Engl J Med 2017;377:1713-22. Clin. Invest. Med. 41, E31–E33 (2018).

    CAS  PubMed  Google Scholar 

  23. Sturm, S. et al. A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br. J. Clin. Pharm. 85, 181–193 (2019).

    CAS  Google Scholar 

  24. Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Clery, A. et al. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-beta1. Nat. Struct. Mol. Biol. 18, 443–450 (2011).

    CAS  PubMed  Google Scholar 

  26. Moursy, A., Allain, F. H. & Clery, A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 42, 6659–6672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hofmann, Y. & Wirth, B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum. Mol. Genet. 11, 2037–2049 (2002).

    CAS  PubMed  Google Scholar 

  28. Young, P. J. et al. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum. Mol. Genet. 11, 577–587 (2002).

    CAS  PubMed  Google Scholar 

  29. Wang, J., Schultz, P. G. & Johnson, K. A. Mechanistic studies of a small-molecule modulator of SMN2 splicing. Proc. Natl Acad. Sci. USA 115, E4604–E4612 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ratni, H. et al. Discovery of risdiplam, a selective survival of motor Neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).

    CAS  PubMed  Google Scholar 

  31. Pinard, E. et al. Discovery of a novel class of survival motor neuron 2 splicing modifiers for the treatment of spinal muscular atrophy. J. Med. Chem. 60, 4444–4457 (2017).

    CAS  PubMed  Google Scholar 

  32. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475–480 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kondo, Y., Oubridge, C., van Roon, A. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5ʹ splice site recognition. Elife 4, e04986 (2015).

    PubMed Central  Google Scholar 

  34. Roca, X. et al. Widespread recognition of 5ʹ splice sites by noncanonical base-pairing to U1 snRNA involving bulged nucleotides. Genes Dev. 26, 1098–1109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Roca, X. & Krainer, A. R. Recognition of atypical 5ʹ splice sites by shifted base-pairing to U1 snRNA. Nat. Struct. Mol. Biol. 16, 176–182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, N. N., Lee, B. M. & Singh, R. N. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Ann. NY Acad. Sci. 1341, 176–187 (2015).

    CAS  PubMed  Google Scholar 

  37. Singh, N. N., Singh, R. N. & Androphy, E. J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 35, 371–389 (2007).

    CAS  PubMed  Google Scholar 

  38. Rhode, B. M., Hartmuth, K., Urlaub, H. & Luhrmann, R. Analysis of site-specific protein–RNA cross-links in isolated RNP complexes, combining affinity selection and mass spectrometry. RNA 9, 1542–1551 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stefan, M. I. & Le Novere, N. Cooperative binding. PLoS Comput. Biol. 9, e1003106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehlert, F. J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharm. 33, 187–194 (1988).

    CAS  Google Scholar 

  41. Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharm. Rev. 54, 323–374 (2002).

    CAS  PubMed  Google Scholar 

  42. Jansen, J. M. et al. Inhibition of prenylated KRAS in a lipid environment. PLoS One 12, e0174706 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Hammes, G. G., Chang, Y. C. & Oas, T. G. Conformational selection or induced fit: a flux description of reaction mechanism. Proc. Natl Acad. Sci. USA 106, 13737–13741 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krawczak, M. et al. Human gene mutation database—a biomedical information and research resource. Hum. Mutat. 15, 45–51 (2000).

    CAS  PubMed  Google Scholar 

  45. Soemedi, R. et al. Pathogenic variants that alter protein code often disrupt splicing. Nat. Genet. 49, 848–855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Disney, M. D. Short-circuiting RNA splicing. Nat. Chem. Biol. 4, 723–724 (2008).

    CAS  PubMed  Google Scholar 

  47. O’Brien, K., Matlin, A. J., Lowell, A. M. & Moore, M. J. The biflavonoid isoginkgetin is a general inhibitor of pre-mRNA splicing. J. Biol. Chem. 283, 33147–33154 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Cretu, C. et al. Structural Basis of Splicing Modulation by Antitumor Macrolide Compounds. Mol. Cell 70, 265–273.e8 (2018).

    CAS  PubMed  Google Scholar 

  49. Charenton, C., Wilkinson, M. E. & Nagai, K. Mechanism of 5ʹ splice site transfer for human spliceosome activation. Science 364, 362–367 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ratni, H. et al. Specific correction of alternative survival motor neuron 2 splicing by small molecules: discovery of a potential novel medicine to treat spinal muscular atrophy. J. Med. Chem. 59, 6086–6100 (2016).

    CAS  PubMed  Google Scholar 

  51. Keller, R. The Computer-Aaided Resonance Assignment Tutorial. (Cantina Verlag, 2004).

  52. Binev, Y., Marques, M. M. & Aires-de-Sousa, J. Prediction of 1H NMR coupling constants with associative neural networks trained for chemical shifts. J. Chem. Inf. Model. 47, 2089–2097 (2007).

    CAS  PubMed  Google Scholar 

  53. Guntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    CAS  PubMed  Google Scholar 

  54. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pettersen, E. F. et al. UCSF chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Tessaro, A. Gossert and M. Krepl for their assistance with the molecular dynamics setup, K. McCarthy and F. Metzger for useful discussions and the RNA synthesis platform of the NCCR RNA and Diseases. This work was supported by the Swiss National Science Foundation, the NCCR RNA and Diseases, cure-SMA and SMA-Europe.

Author information

Authors and Affiliations

Authors

Contributions

S.C., A.C. and F.H.-T.A. designed the research. S.C. and L.G. performed gel shift assays. S.C., S.B. and A.M. performed the splicing assays in cellular models. S.C. and S.R. performed NMR data collection. A.K. and J.H. synthesized the isotopically labeled RNA. H.R. furnished the splicing modifiers. S.C. analyzed the data and solved the structures. S.C. and F.H.-T.A. wrote the manuscript.

Corresponding authors

Correspondence to Sébastien Campagne or Frédéric H.-T. Allain.

Ethics declarations

Competing interests

H.R. is an employee of F. Hoffmann-La Roche Ltd.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figs 1–10.

Reporting Summary

Supplementary Video 1

Solution structure of the apo-RNA duplex.

Supplementary Video 2

Solution structure of the RNA duplex bound to SMN-C5.

Supplementary Video 3

RNA conformational switch induced by SMN-C5—major groove view.

Supplementary Video 4

RNA conformational switch induced by SMN-C5—minor groove view.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campagne, S., Boigner, S., Rüdisser, S. et al. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 15, 1191–1198 (2019). https://doi.org/10.1038/s41589-019-0384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-019-0384-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research