Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity

Abstract

Lipid nanoparticles (LNPs) can be designed to potentiate cancer immunotherapy by promoting their uptake by antigen-presenting cells, stimulating the maturation of these cells and modulating the activity of adjuvants. Here we report an LNP-screening method for the optimization of the type of helper lipid and of lipid-component ratios to enhance the delivery of tumour-antigen-encoding mRNA to dendritic cells and their immune-activation profile towards enhanced antitumour activity. The method involves screening for LNPs that enhance the maturation of bone-marrow-derived dendritic cells and antigen presentation in vitro, followed by assessing immune activation and tumour-growth suppression in a mouse model of melanoma after subcutaneous or intramuscular delivery of the LNPs. We found that the most potent antitumour activity, especially when combined with immune checkpoint inhibitors, resulted from a coordinated attack by T cells and NK cells, triggered by LNPs that elicited strong immune activity in both type-1 and type-2 T helper cells. Our findings highlight the importance of optimizing the LNP composition of mRNA-based cancer vaccines to tailor antigen-specific immune-activation profiles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro screening of mRNA lipid nanoparticles for the transfection and induction of antigen presentation and maturation in DCs.
Fig. 2: In vivo assessments of lymph-node-cell transfection and immune activation by the top 3 LNP formulations.
Fig. 3: Antitumour efficacy of top mRNA LNP formulations as prophylactic vaccines.
Fig. 4: Antitumour efficacy of the top mRNA LNP formulations as therapeutic vaccines.
Fig. 5: A coordinated attack by T cells and NK cells was responsible for long-term protection.
Fig. 6: Local transfection, cellular uptake and endosomal escape of mRNA LNPs.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data for the figures are provided with this paper.

References

  1. Huang, Q., Zeng, J. & Yan, J. COVID-19 mRNA vaccines. J. Genet. Genomics 48, 107–114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang, S., Zhu, Y., Zhang, L. & Zhang, Z. Recent advances in delivery systems for genetic and other novel vaccines. Adv. Mater. 34, e2107946 (2022).

    Article  PubMed  Google Scholar 

  3. Wouters, O. J. et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet 397, 1023–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sahin, U. et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 595, 572–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616–622 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lederer, K. et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 53, 1281–1295.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics – developing a new class of drugs. Nat. Rev. Drug Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines – a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trougakos, I. P. et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol. Med. 28, 542–554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Laczkó, D. et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53, 724–732.e7 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Painter, M. M. et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 54, 2133–2142.e3 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lozano-Rodríguez, R. et al. Cellular and humoral functional responses after BNT162b2 mRNA vaccination differ longitudinally between naive and subjects recovered from COVID-19. Cell Rep. 38, 110235 (2022).

    Article  PubMed  Google Scholar 

  17. Reichmuth, A. M., Oberli, M. A., Jaklenec, A., Langer, R. & Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hassett, K. J. et al. Impact of lipid nanoparticle size on mRNA vaccine immunogenicity. J. Control. Release 335, 237–246 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Pilkington, E. H. et al. From influenza to COVID-19: lipid nanoparticle mRNA vaccines at the frontiers of infectious diseases. Acta Biomater. 131, 16–40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miao, L., Zhang, Y. & Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 20, 41 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sankaradoss, A. et al. Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Mol. Ther. 30, 2058–2077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bretscher, P. A. On the mechanism determining the Th1/Th2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand. J. Immunol. 79, 361–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored. Front. Immunol. 10, 1234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Del Prete, G. The concept of type-1 and type-2 helper T cells and their cytokines in humans. Int. Rev. Immunol. 16, 427–455 (1998).

    Article  PubMed  Google Scholar 

  25. Duarte, L. F. et al. Immune profile and clinical outcome of breakthrough cases after vaccination with an inactivated SARS-CoV-2 vaccine. Front. Immunol. 12, 742914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B. & Prado, E. O. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. npj Vaccines 6, 28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Y. et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, Phase 1/2 clinical trial. Lancet Infect. Dis. 21, 181–192 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Mulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Alameh, M. G., Weissman, D. & Pardi, N. Messenger RNA-based vaccines against infectious diseases. Curr. Top. Microbiol. Immunol. 440, 111–145 (2022).

    PubMed  Google Scholar 

  31. Ewer, K. J. et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a Phase 1/2 clinical trial. Nat. Med. 27, 270–278 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 20, 615–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindgren, G. et al. Induction of robust B cell responses after influenza mRNA vaccination is accompanied by circulating hemagglutinin-specific ICOS+ PD-1+ CXCR3+ T follicular helper cells. Front. Immunol. 8, 1539 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. VanBlargan, L. A. et al. An mRNA vaccine protects mice against multiple tick-transmitted flavivirus infections. Cell Rep. 25, 3382–3392.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pardi, N. et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol. Ther. Nucleic Acids 15, 36–47 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 586, 594–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Oberhardt, V. et al. Rapid and stable mobilization of CD8+ T cells by SARS-CoV-2 mRNA vaccine. Nature 597, 268–273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Karmacharya, P., Patil, B. R. & Kim, J. O. Recent advancements in lipid-mRNA nanoparticles as a treatment option for cancer immunotherapy. J. Pharm. Investig. 52, 415–426 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guevara, M. L., Persano, F. & Persano, S. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Front. Chem. 8, 589959 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y., Sun, C., Wang, C., Jankovic, K. E. & Dong, Y. Lipids and lipid derivatives for RNA delivery. Chem. Rev. 121, 12181–12277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lokugamage, M. P. et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat. Biomed. Eng. 5, 1059–1068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y., Miao, L., Satterlee, A. & Huang, L. Delivery of oligonucleotides with lipid nanoparticles. Adv. Drug Del. Rev. 87, 68–80 (2015).

    Article  Google Scholar 

  47. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Patel, S., Ryals, R. C., Weller, K. K., Pennesi, M. E. & Sahay, G. Lipid nanoparticles for delivery of messenger RNA to the back of the eye. J. Control. Release 303, 91–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patel, S. K. et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J. Control. Release 347, 521–532 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Swingle, K. L. et al. Amniotic fluid stabilized lipid nanoparticles for in utero intra-amniotic mRNA delivery. J. Control. Release 341, 616–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, Y. et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat. Commun. 13, 4282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, B. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 15, 8099–8107 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng, X. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Del. Rev. 99, 129–137 (2016).

    Article  CAS  Google Scholar 

  55. Kulkarni, J. A. et al. Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA. Nanomedicine 13, 1377–1387 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 9926–9937 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, H. et al. Rational design of anti-inflammatory lipid nanoparticles for mRNA delivery. J. Biomed. Mater. Res. A 110, 1101–1108 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bannigan, P. et al. Machine learning models to accelerate the design of polymeric long-acting injectables. Nat. Commun. 14, 35 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gulley, J. L. et al. Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J. Natl Cancer Inst. 109, djw261 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hu, Z. et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 27, 515–525 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lo Nigro, C. et al. NK-mediated antibody-dependent cell-mediated cytotoxicity in solid tumors: biological evidence and clinical perspectives. Ann. Transl. Med. 7, 105 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S. & Sondel, P. M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 6, 368 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hu, Y. et al. Size-controlled and shelf-stable DNA particles for production of lentiviral vectors. Nano Lett. 21, 5697–5705 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thurston, T. et al. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Badrinath, S. et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature 606, 992–998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. He, Z. et al. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery. Acta Biomater. 81, 195–207 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, H. et al. Flash technology-based self-assembly in nanoformulation: from fabrication to biomedical applications. Mater. Today 42, 99–116 (2021).

    Article  CAS  Google Scholar 

  70. Hu, Y. et al. Kinetic control in assembly of plasmid DNA/polycation complex nanoparticles. ACS Nano. 13, 10161–10178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.C.M. and H.-Q.M. disclose support for the research described in this study from the National Institutes of Health (U01AI155313). J.P.S., J.J.G. and H.-Q.M. also disclose support for the publication of this study from the National Institutes of Health (P41EB028239).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and H.-Q.M. conceived and designed the study. H.-Q.M. and S.C.M. secured the funding for the study. Y.Z., J.M., R.S., Z.-C.Y., I.V., J.L., X.L., L.C., W.H.T., N.M.K., C.W., W.J.C. and J.K. performed the experiments. Y.Z., J.M., R.S., J.L.S., I.V., Y.H., W.J.C., R.A.R., M.J.S., N.K.L., S.L., G.P.H., S.K.R., S.Y.T., D.J.Z., J.J.G., L.Z., J.C., J.P.S., S.C.M. and H.-Q.M. participated in data analysis and interpretation. The manuscript was written by Y.Z. and H.-Q.M., with revisions made by S.C.M., C.W., R.S., I.V., S.Y.T., W.J.C., J.C.D., L.Z., J.P.S., R.A.R., S.K.R. and J.J.G., and with input from all the other authors.

Corresponding authors

Correspondence to Sean C. Murphy or Hai-Quan Mao.

Ethics declarations

Competing interests

H.-Q.M., Y.Z., J.M, R.S, L.C., I.V. and S.K.R. are co-inventors of a pending patent application (PCT/US2023/016938, filed in March 2023) covering the LNP formulation described in this paper. The patent was filed through Johns Hopkins Technology Ventures and is managed by it. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Secretion levels of cytokines within the supernatant of BMDCs after 24 h of incubation.

Secretion levels of IL-6 (a), TNF-α (b) and IFN-γ (c), within the supernatant of BMDCs after 24 h incubation with the three mOVA-loaded LNPs were measured by ELISA. Data are represented as the mean ± s.e.m. Data were analyzed using one-way ANOVA and Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001; NS, not significant; BMDC, bone marrow derived dendritic cell; ELISA, enzyme-linked immunoassay.

Source data

Extended Data Fig. 2 IL-6 and TNF-α secretion levels from antigen-stimulated splenocytes.

Splenocytes were isolated from vaccinated mice and restimulated in vitro with OVA and SIINFEKL peptide (100 μg ml−1 OVA and 2 μg ml−1 SIINFEKL) for 72 h. Secretion levels of IL-6 (a) and TNF-α (b) within the supernatant of were measured by ELISA. ‘Algel+OVA’ stands for Alhydrogel®+OVA group. Data represent the mean ± s.e.m. from a representative experiment (n = 4 biologically independent samples) of two independent experiments. Data were analyzed using one-way ANOVA and Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; NS, not significant; BMDC, bone marrow derived dendritic cell; ELISA, enzyme-linked immunoassay.

Source data

Extended Data Fig. 3 Titres of OVA-specific IgG subclass antibody in blood-serum samples collected on day 21 following immunization.

IgG1 (a) and IgG2a (b) antibodies in blood serum on day 21 were determined by ELISA. ‘Algel+OVA’ stands for Alhydrogel®+OVA group. Data represent the mean ± s.e.m. from a representative experiment (n = 4 biologically independent samples) of two independent experiments. Data were analyzed using one-way ANOVA and Dunnett’s multiple comparisons test. ****P < 0.0001; ELISA, enzyme-linked immunoassay.

Source data

Extended Data Fig. 4 Cytokine levels in the local injection site measured at 4 h or 24 h post-administration of the top-performing LNPs.

ELISA was employed to quantify the cytokine levels, including IFN-γ (a), TNF-α (b), and IL-4 (c), at the local injection site using OVA-encoding mRNA after the administration of three formulations (C10, D6, and F5) at 4 h and 24 h. The local injection sites were collected, homogenized, and subjected to tissue lysis to extract the proteins. The resulting lysate was centrifuged to separate the insoluble cellular debris. The protein concentration in each sample was determined using the BCA assay and normalized accordingly. Data represent the mean ± s.e.m. with n = 4 biologically independent samples. Data were analyzed using one-way ANOVA and Tukey’s multiple comparisons test. *P < 0.05; ***P < 0.001; NS, not significant.

Source data

Supplementary information

Supplementary Information

Supplementary figures and tables.

Reporting Summary

Peer Review File

Supplementary Dataset

Source data and statistics for the supplementary figures.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Ma, J., Shen, R. et al. Screening for lipid nanoparticles that modulate the immune activity of helper T cells towards enhanced antitumour activity. Nat. Biomed. Eng (2023). https://doi.org/10.1038/s41551-023-01131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-023-01131-0

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer