Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate

Abstract

Assays for assessing cell-mediated cytotoxicity are largely target-cell-centric and cannot identify and isolate subpopulations of cytotoxic effector cells. Here we describe an assay compatible with flow cytometry for the accurate identification and sorting of functional killer-cell subpopulations in co-cultures. The assay, which we named PAINTKiller (for ‘proximity affinity intracellular transfer identification of killer cells’), relies on the detection of an intracellular fluorescent protein ‘painted’ by a lysed cell on the surface of the lysing cytotoxic cell (specifically, on cell lysis the intracellular fluorescein derivative carboxyfluorescein succinimidyl ester is captured on the surface of the natural killer cell by an antibody for anti-fluorescein isothiocyanate linked to an antibody for the pan-leucocyte surface receptor CD45). The assay can be integrated with single-cell RNA sequencing for the analysis of molecular pathways associated with cell cytotoxicity and may be used to uncover correlates of functional immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of PAINTKiller assay.
Fig. 2: Demonstration of PAINTKiller principles using NK-92MI as effector cells and K562 as target cells.
Fig. 3: PAINTKiller-sort reveals inheritable functional heterogeneity in NK cells.
Fig. 4: PAINTKiller enables sensitive identification of cytotoxic primary NK cells.
Fig. 5: PAINTKiller enables concurrent detection of cytotoxicity and cytokine secretion functionality of effector cells.
Fig. 6: PAINTKiller-seq characterizes primary NK cell cytotoxicity and associated molecular traits.
Fig. 7: PAINTKiller-seq reveals the cellular origins of cytotoxic NK cells.

Similar content being viewed by others

Data availability

Curated hallmark gene sets are publicly available from Molecular Signatures Database (MSigDB, v.7.4). Sequencing data from PAINTKiller-seq are available from the GEO database, with accession number GSE207508. All data needed to evaluate the conclusions described in this paper are included within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are available for research purposes from the corresponding authors on reasonable request. Source data are provided with this paper.

Code availability

The R code to reproduce the analyses shown in the figures is available on Zenodo at https://doi.org/10.5281/zenodo.8004120.

References

  1. Kagi, D., Ledermann, B., Burki, K., Zinkernagel, R. M. & Hengartner, H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14, 207–232 (1996).

    CAS  PubMed  Google Scholar 

  2. Prager, I. & Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 105, 1319–1329 (2019).

    CAS  PubMed  Google Scholar 

  3. Brunner, K. T., Mauel, J., Cerottini, J. C. & Chapuis, B. Quantitative assay of the lytic action of immune lymphoid cells on 51Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14, 181–196 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sepp, A., Binns, R. M. & Lechler, R. I. Improved protocol for colorimetric detection of complement-mediated cytotoxicity based on the measurement of cytoplasmic lactate dehydrogenase activity. J. Immunol. Methods 196, 175–180 (1996).

    CAS  PubMed  Google Scholar 

  5. Wong, P., Wagner, J. A., Berrien-Elliott, M. M., Schappe, T. & Fehniger, T. A. Flow cytometry-based ex vivo murine NK cell cytotoxicity assay. STAR Protoc. 2, 100262 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kandarian, F., Sunga, G. M., Arango-Saenz, D. & Rossetti, M. A flow cytometry-based cytotoxicity assay for the assessment of human NK cell activity. J. Vis. Exp. (126), e56191 (2017).

  7. Wu, X., Zhang, Y., Li, Y. & Schmidt-Wolf, I. G. H. Improvements in flow cytometry-based cytotoxicity assay. Cytometry A 99, 680–688 (2021).

    CAS  PubMed  Google Scholar 

  8. Peper, J. K. et al. An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells. J. Immunol. Methods 405, 192–198 (2014).

    CAS  PubMed  Google Scholar 

  9. Vembadi, A., Menachery, A. & Qasaimeh, M. A. Cell cytometry: review and perspective on biotechnological advances. Front. Bioeng. Biotechnol. 7, 147 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Slota, M., Lim, J. B., Dang, Y. & Disis, M. L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines 10, 299–306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alter, G., Malenfant, J. M. & Altfeld, M. CD107a as a functional marker for the identification of natural killer cell activity. J. Immunol. Methods 294, 15–22 (2004).

    CAS  PubMed  Google Scholar 

  12. Bryceson, Y. T., March, M. E., Barber, D. F., Ljunggren, H. G. & Long, E. O. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med. 202, 1001–1012 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolint, P., Betts, M. R., Koup, R. A. & Oxenius, A. Immediate cytotoxicity but not degranulation distinguishes effector and memory subsets of CD8+ T cells. J. Exp. Med. 199, 925–936 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Skelley, A. M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 6, 147–152 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dura, B. et al. Profiling lymphocyte interactions at the single-cell level by microfluidic cell pairing. Nat. Commun. 6, 5940 (2015).

    CAS  PubMed  Google Scholar 

  16. Dura, B. et al. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. Proc. Natl Acad. Sci. USA 113, E3599–E3608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Assenmacher, M., Lohning, M. & Radbruch, A. Detection and isolation of cytokine secreting cells using the cytometric cytokine secretion assay. Curr. Protoc. Immunol. https://doi.org/10.1002/0471142735.im0627s46 (2002).

  18. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. https://doi.org/10.1002/cpim.40 (2018).

  19. Deng, N. & Mosmann, T. R. Optimization of the cytokine secretion assay for human IL-2 in single and combination assays. Cytometry A 87, 777–783 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Trinklein, N. D. et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 11, 639–652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Good, Z. et al. Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nat. Biotechnol. 37, 259–266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Matera, G., Lupi, M. & Ubezio, P. Heterogeneous cell response to topotecan in a CFSE-based proliferation test. Cytometry A 62, 118–128 (2004).

    PubMed  Google Scholar 

  23. Ponchio, L. et al. Mitomycin C as an alternative to irradiation to inhibit the feeder layer growth in long-term culture assays. Cytotherapy 2, 281–286 (2000).

    CAS  PubMed  Google Scholar 

  24. Llames, S., Garcia-Perez, E., Meana, A., Larcher, F. & del Rio, M. Feeder layer cell actions and applications. Tissue Eng. B Rev. 21, 345–353 (2015).

    CAS  Google Scholar 

  25. Krzewski, K., Gil-Krzewska, A., Nguyen, V., Peruzzi, G. & Coligan, J. E. LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood 121, 4672–4683 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, D. et al. Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses. Immunity 31, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Suen, W. C., Lee, W. Y., Leung, K. T., Pan, X. H. & Li, G. Natural killer cell-based cancer immunotherapy: a review on 10 years completed clinical trials. Cancer Invest. 36, 431–457 (2018).

    CAS  PubMed  Google Scholar 

  28. Surman, D. R., Dudley, M. E., Overwijk, W. W. & Restifo, N. P. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J. Immunol. 164, 562–565 (2000).

    CAS  PubMed  Google Scholar 

  29. Rosenberg, S. A. & Dudley, M. E. Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc. Natl Acad. Sci. USA 101, 14639–14645 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Caligiuri, M. A. Human natural killer cells. Blood 112, 461–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Spiegel, J. Y. et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 27, 1419–1431 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prager, I. et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, J. et al. Multifunctional microparticles with stimulation and sensing capabilities for facile NK cell activity assay. ACS Sens. 6, 693–697 (2021).

    CAS  PubMed  Google Scholar 

  34. Dybkaer, K. et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 8, 230 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Zhang, J. et al. Sequential actions of EOMES and T-BET promote stepwise maturation of natural killer cells. Nat. Commun. 12, 5446 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van Helden, M. J. et al. Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. J. Exp. Med. 212, 2015–2025 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Chester, C., Fritsch, K. & Kohrt, H. E. Natural killer cell immunomodulation: targeting activating, inhibitory, and co-stimulatory receptor signaling for cancer immunotherapy. Front. Immunol. 6, 601 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Connor, J. H., Weiser, D. C., Li, S., Hallenbeck, J. M. & Shenolikar, S. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell. Biol. 21, 6841–6850 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X. W. et al. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl Acad. Sci. USA 96, 3706–3711 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, Y., Yu, M., Yin, J., Yan, H. & Wang, X. Enhanced calcium signal induces NK cell degranulation but inhibits its cytotoxic activity. J. Immunol. 208, 347–357 (2022).

    CAS  PubMed  Google Scholar 

  41. Jacobi, C. et al. Exposure of NK cells to intravenous immunoglobulin induces IFN gamma release and degranulation but inhibits their cytotoxic activity. Clin. Immunol. 133, 393–401 (2009).

    CAS  PubMed  Google Scholar 

  42. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Parish, C. R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 77, 499–508 (1999).

    CAS  PubMed  Google Scholar 

  44. Zheng, Y., Tang, L., Mabardi, L., Kumari, S. & Irvine, D. J. Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano 11, 3089–3100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, T., Womersley, H. J., Wang, J. R., Scolnick, J. & Cheow, L. F. Time-resolved assessment of single-cell protein secretion by sequencing. Nat. Methods 20, 723–734 (2023).

    CAS  PubMed  Google Scholar 

  46. Roelli, P., bbimber, Flynn, B., santiagorevale & Gui, G. Hoohm/CITE-seq-Count: 1.4.2 (1.4.2). Zenodo https://doi.org/10.5281/zenodo.2585469 (2019).

  47. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pont, F., Tosolini, M. & Fournie, J. J. Single-Cell Signature Explorer for comprehensive visualization of single cell signatures across scRNA-seq datasets. Nucleic Acids Res. 47, e133 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge technical support from the Flow Cytometry Laboratory (NUS Medical Sciences Cluster) for cell sorting. L.F.C. was supported for the research described in this study by the National Medical Research Council (MOH-OFIRG18nov-003), the Ministry of Education of Singapore (MOE-T2EP30120-0008) and Singapore-MIT Alliance for Research and Technology Critical Analytics for Manufacturing of Personalized-Medicine (SMART CAMP) Interdisciplinary Research Group.

Author information

Authors and Affiliations

Authors

Contributions

L.F.C., Y.H.L. and T.W. conceived and designed the study. T.W. performed the experiments corresponding to Figs. 2, 4 and 7. Y.H.L. performed the experiments corresponding to Fig. 3. T.W. and L.F.C. performed the PAINTKiller-seq data analysis. L.F.C., T.W. and Y.H.L. wrote the manuscript. All authors commented on the manuscript and approved the submission.

Corresponding author

Correspondence to Lih Feng Cheow.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sample demultiplexing of PAINTKiller-seq.

a, Unfiltered gene-expression data from two sequencing lanes (‘Exp. 1’ and ‘Exp. 2’). Cells with the following criteria were filtered for downstream analysis: gene numbers > 1,200 and < 8,000, gene-expression counts > 1,000 and < 40,000, mitochondrial genes < 10% of total genes detected. b, The cell samples, including NK-K562 co-culture group (‘NK + K562’), NK only group (‘NK only’) and isotype staining control (‘Isotype ctrl’), were demultiplexed by their staining intensity of anti-β2M hashtags. Cell numbers for each group were shown in bracket.

Extended Data Fig. 2 NK cell identification and cell clustering.

a, b, Cells were clustered by their transcriptional profiles (a), and non-NK cells were excluded according to the expression of lineage-associated genes such as CD3E for T cells and HBA1/HBA2 for K562 cells (b). c, NK cells were re-grouped by their transcriptional profiles. A total of 13 clusters were identified. Cluster 6 and 7 were mostly found in NK sample that has been co-cultured with K562 cells.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luah, Y.H., Wu, T. & Cheow, L.F. Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate. Nat. Biomed. Eng 8, 248–262 (2024). https://doi.org/10.1038/s41551-023-01089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-023-01089-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research