Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Mass cytometry profiling of human dendritic cells in blood and tissues

Abstract

The immune system comprises distinct functionally specialized cell populations, which can be characterized in depth by mass cytometry protein profiling. Unfortunately, the low-throughput nature of mass cytometry has made it challenging to analyze minor cell populations. This is the case for dendritic cells, which represent 0.2–2% of all immune cells in tissues and yet perform the critical task of initiating and modulating immune responses. Here, we provide an optimized step-by-step protocol for the characterization of well-known and emerging human dendritic cell populations in blood and tissues using mass cytometry. We provide detailed instructions for the generation of single-cell suspensions, sample enrichment, staining, acquisition and data analysis. We also include a barcoding option that reduces acquisition variability and allows the analysis of low numbers of dendritic cells, i.e., ~20,000. In contrast to other protocols, we emphasize the use of negative selection approaches to enrich for minor populations of immune cells while avoiding their activation. The entire procedure can be completed in 2–3 d and can be conveniently paused at several stages. The procedure described in this robust and reliable protocol allows the analysis of human dendritic cells in health and disease and during vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the experimental procedures described in this protocol.
Fig. 2: Enrichment of myeloid cells using negative selection.
Fig. 3: Gating of cells to de-barcode.
Fig. 4: Gating of sorted DCs pooled with mouse filler splenocytes.
Fig. 5: Gating of DCs for unbiased analysis.
Fig. 6: Anticipated results for the analysis of DCs from blood, spleen and skin.

Similar content being viewed by others

Data availability

Data in this manuscript are available at http://flowrepository.org/ (accession number FR-FCM-Z453), including data shown in Figs. 46 and Supplementary Fig. 1. PBMC staining using CD88/CD89 is available upon request to the corresponding author.

References

  1. Steinman, R. M. & Idoyaga, J. Features of the dendritic cell lineage. Immunol. Rev. 234, 5–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, K. L. & Reizis, B. Dendritic cells: arbiters of immunity and immunological tolerance. Cold Spring Harb. Perspect. Biol. 4, a007401 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Böttcher, J. P. & Reis e Sousa, C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Alcántara-Hernández, M. et al. High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization. Immunity 47, 1037–1050.e6 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Villani, A.-C. et al. Single-cellRNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Heidkamp, G. F. et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci. Immunol. 1, eaai7677 (2016).

    Article  PubMed  Google Scholar 

  9. Granot, T. et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46, 504–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bosteels, C. & Scott, C. L. Transcriptional regulation of DC fate specification. Mol. Immunol. 121, 38–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leylek, R. & Idoyaga, J. The versatile plasmacytoid dendritic cell: function, heterogeneity, and plasticity. Int. Rev. Cell Mol. Biol. 349, 177–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Leylek, R. et al. Chromatin landscape underpinning human dendritic cell heterogeneity. Cell Rep. 32, 108180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abbas, A. et al. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat. Immunol. 21, 983–997 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Theisen, D. & Murphy, K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res 6, 98 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Eisenbarth, S. C. Dendritic cell subsets in T cell programming: location dictates function. Nat. Rev. Immunol. 19, 89–103 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dutertre, C.-A. et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51, 573–589.e8 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Cytlak, U. et al. Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 53, 353–370.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leylek, R. et al. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep 29, 3736–3750.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjornson, Z. B., Nolan, G. P. & Fantl, W. J. Single-cell mass cytometry for analysis of immune system functional states. Curr. Opin. Immunol. 25, 484–494 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Baca, Q., Cosma, A., Nolan, G. & Gaudilliere, B. The road ahead: implementing mass cytometry in clinical studies, one cell at a time. Cytom. B Clin. Cytom. 92, 10–11 (2017).

    Article  Google Scholar 

  21. Böttcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    Article  PubMed  CAS  Google Scholar 

  22. Leelatian, N., Diggins, K. E. & Irish, J. M. Characterizing phenotypes and signaling networks of single human cells by mass cytometry. Methods Mol. Biol. 1346, 99–113 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Palma, S. & Bodenmiller, B. Unraveling cell populations in tumors by single-cell mass cytometry. Curr. Opin. Biotechnol. 31, 122–129 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Kapoor, V. N. et al. Gremlin 1+ fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat. Immunol. 22, 571–585 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Inaba, K. et al. Isolation of dendritic cells. Curr. Protoc. Immunol. Ch. 3, Unit 3.7–3.7.19 (2009)..

  26. Stoitzner, P., Romani, N., McLellan, A. D., Tripp, C. H. & Ebner, S. Isolation of skin dendritic cells from mouse and man. Methods Mol. Biol. 595, 235–248 (2010).

    Article  PubMed  Google Scholar 

  27. Leipold, M. D. & Maecker, H. T. Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J. Vis. Exp. 69, e4398 (2012).

    Google Scholar 

  28. Pellerin, A. et al. Anti-BDCA2 monoclonal antibody inhibits plasmacytoid dendritic cell activation through Fc-dependent and Fc-independent mechanisms. EMBO Mol. Med. 7, 464–476 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neurauter, A. A. et al. Cell isolation and expansion using Dynabeads. Adv. Biochem. Eng. Biotechnol. 106, 41–73 (2007).

    CAS  PubMed  Google Scholar 

  30. Yu, H. et al. Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset. Protein Cell 6, 297–306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ouchi, T., Nakato, G. & Udey, M. C. EpCAM expressed by murine epidermal Langerhans cells modulates immunization to an epicutaneously applied protein antigen. J. Invest. Dermatol. 136, 1627–1635 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stewart, J. C., Villasmil, M. L. & Frampton, M. W. Changes in fluorescence intensity of selected leukocyte surface markers following fixation. Cytometry A 71, 379–385 (2007).

    Article  PubMed  Google Scholar 

  34. Wagar, L. E. Live cell barcoding for efficient analysis of small samples by mass cytometry. Methods Mol. Biol. 1989, 125–135 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Mei, H. E., Leipold, M. D., Schulz, A. R., Chester, C. & Maecker, H. T. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 194, 2022–2031 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. & Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gullaksen, S.-E. et al. Titrating complex mass cytometry panels. Cytometry A 95, 792–796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Picot, J., Guerin, C. L., Le Van Kim, C. & Boulanger, C. M. Flow cytometry: retrospective, fundamentals and recent instrumentation. Cytotechnology 64, 109–130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li, F. et al. Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Methods 386, 101–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wizenty, J. et al. Autofluorescence: a potential pitfall in immunofluorescence-based inflammation grading. J. Immunol. Methods 456, 28–37 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Halldén, G., Sköld, C. M., Eklund, A., Forslid, J. & Hed, J. Quenching of intracellular autofluorescence in alveolar macrophages permits analysis of fluorochrome labelled surface antigens by flow cytofluorometry. J. Immunol. Methods 142, 207–214 (1991).

    Article  PubMed  Google Scholar 

  42. Brummelman, J. et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 14, 1946–1969 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Herring, C. A. et al. Unsupervised trajectory analysis of single-cell RNA-Seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51.e9 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Diggins, K. E., Greenplate, A. R., Leelatian, N., Wogsland, C. E. & Irish, J. M. Characterizing cell subsets using marker enrichment modeling. Nat. Methods 14, 275–278 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diggins, K. E., Ferrell, P. B. & Irish, J. M. Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 82, 55–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leipold, M. D. & Maecker, H. T. Phenotyping of live human PBMC using CyTOF™ mass cytometry. Bio Protoc. 5, e1382–e1382 (2015).

    Article  PubMed  Google Scholar 

  48. Gonder, S. et al. Method for the analysis of the tumor microenvironment by mass cytometry: application to chronic lymphocytic leukemia. Front. Immunol. 11, 578176 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roussel, M., Bartkowiak, T. & Irish, J. M. Picturing polarized myeloid phagocytes and regulatory cells by mass cytometry. Methods Mol. Biol. 1989, 217–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sander, J. et al. Cellular differentiation of human monocytes is regulated by time-dependent interleukin-4 signaling and the transcriptional regulator NCOR2. Immunity 47, 1051–1066.e12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baharlou, H., Canete, N. P., Cunningham, A. L., Harman, A. N. & Patrick, E. Mass cytometry imaging for the study of human diseases-applications and data analysis strategies. Front. Immunol. 10, 2657 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerner, M. Y., Casey, K. A., Kastenmuller, W. & Germain, R. N. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J. Exp. Med. 214, 3105–3122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Czapiga, M., Kirk, A. D. & Lekstrom-Himes, J. Platelets deliver costimulatory signals to antigen-presenting cells: a potential bridge between injury and immune activation. Exp. Hematol. 32, 135–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Shoup, M. et al. The value of splenic preservation with distal pancreatectomy. Arch. Surg. 137, 164–168 (2002).

    Article  PubMed  Google Scholar 

  55. Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P. & Bodenmiller, B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81, 467–475 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y. & Aghaeepour, N. CytoNorm: a normalization algorithm for cytometry data. Cytometry A 97, 268–278 (2020).

    Article  PubMed  Google Scholar 

  57. Rybakowska, P., Alarcón-Riquelme, M. E. & Marañón, C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput. Struct. Biotechnol. J. 18, 874–886 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

    Article  CAS  Google Scholar 

  59. Chester, C. & Maecker, H. T. Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 195, 773–779 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DP2AR069953, R01CA219994, R01AI158808 and R21AI163775 awarded to J.I. Data collection was performed on an instrument in the Shared FACS Facility obtained using NIH S10 Shared Instrument Grant S10OD016318-01. We thank the blood donors for their participation and the Idoyaga Lab members for technical support and discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A-H. and J.I. conceptualized and wrote the paper, M.A-H. performed the experiments and analyzed the data. J.I. is responsible for funding acquisition, supervision and project administration.

Corresponding author

Correspondence to Juliana Idoyaga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Gustavo Menezes and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Alcántara-Hernández, M. et al. Immunity 47, 1037–1050.e6 (2017): https://doi.org/10.1016/j.immuni.2017.11.001

Leylek, R. et al. Cell Rep. 32, 108180 (2020): https://doi.org/10.1016/j.celrep.2020.108180

Leylek, R. et al. Cell Rep. 29, 3736–3750.e8 (2019): https://doi.org/10.1016/j.celrep.2019.11.042

Extended data

Extended Data Fig. 1 Frequencies of leukocytes in blood and skin samples before and after enrichment.

a, PBMCs were obtained from blood (Steps 1–10). b, Skin cell suspensions were obtained after enzymatic digestion (Steps 23–37). Myeloid cells or leukocytes were negatively enriched from blood and skin, respectively, following the procedures described in Steps 45–53. Cells were stained for flow cytometry before and after negative enrichment. One representative blood and skin sample is shown. Numbers represent frequency in the gate. Antibodies used are as follows: CD45 Brilliant Violet 785 (Biolegend, cat. no. 304049), CD3 PerCPCy5.5 (Biolegend, cat. no. 300430), CD19 PerCPCy5.5 (Biolegend, cat. no. 302230), CD335 PerCPCy5.5 (Biolegend, cat. no. 331920), CD66b PerCPCy5.5 (Biolegend, cat. no. 305108). Figure created for this protocol from data obtained as part of a primary publication5.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcántara-Hernández, M., Idoyaga, J. Mass cytometry profiling of human dendritic cells in blood and tissues. Nat Protoc 16, 4855–4877 (2021). https://doi.org/10.1038/s41596-021-00599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00599-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing