Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Graph representation learning in biomedicine and healthcare

Abstract

Networks—or graphs—are universal descriptors of systems of interacting elements. In biomedicine and healthcare, they can represent, for example, molecular interactions, signalling pathways, disease co-morbidities or healthcare systems. In this Perspective, we posit that representation learning can realize principles of network medicine, discuss successes and current limitations of the use of representation learning on graphs in biomedicine and healthcare, and outline algorithmic strategies that leverage the topology of graphs to embed them into compact vectorial spaces. We argue that graph representation learning will keep pushing forward machine learning for biomedicine and healthcare applications, including the identification of genetic variants underlying complex traits, the disentanglement of single-cell behaviours and their effects on health, the assistance of patients in diagnosis and treatment, and the development of safe and effective medicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation learning for networks in biomedicine and healthcare.
Fig. 2: Algorithmic paradigms in graph representation learning.
Fig. 3: Biomedical applications of graph representation learning.
Fig. 4: Representation learning in four areas of biomedicine and healthcare.

Similar content being viewed by others

References

  1. Qiu, X. et al. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst 10, 265–274.e11 (2020).

    Article  CAS  Google Scholar 

  2. Nicholson, D. N. & Greene, C. S. Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J. 18, 1414–1428 (2020).

    Article  Google Scholar 

  3. Robinson, P. N. et al. The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008).

    Article  CAS  Google Scholar 

  4. Schriml, L. M. et al. Disease ontology: a backbone for disease semantic integration. Nucleic Acids Res. 40, D940–D946 (2012).

    Article  CAS  Google Scholar 

  5. Hong, C. et al. Clinical knowledge extraction via sparse embedding regression (KESER) with multi-center large scale electronic health record data. npj Digital Med 4, 151 (2021).

    Article  Google Scholar 

  6. Gysi, D. M. et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci. USA 118, e2025581118 (2021).

    Article  CAS  Google Scholar 

  7. Nelson, C. A., Butte, A. J. & Baranzini, S. E. Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nat. Commun. 10, 3045 (2019).

    Article  Google Scholar 

  8. Chen, R. J. et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis. In IEEE Transactions on Medical Imaging Vol. 41, 757–770 (IEEE, 2022).

  9. Callahan, T. J., Tripodi, I. J., Pielke-Lombardo, H. & Hunter, L. E. Knowledge-based biomedical data science. Annu. Rev. Biomed. Data Sci. 3, 23–41 (2020).

    Article  Google Scholar 

  10. Barabási, A.-L. Network medicine — from obesity to the “diseasome”. N. Engl. J. Med. 357, 404–407 (2007).

    Article  Google Scholar 

  11. Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res 45, D712–D722 (2017).

    Article  CAS  Google Scholar 

  12. Goh, K.-I. et al. The human disease network. Proc. Natl Acad. Sci. USA 104, 8685–8690 (2007).

    Article  CAS  Google Scholar 

  13. Barabási, A.-L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

    Article  Google Scholar 

  14. Hu, J. X., Thomas, C. E. & Brunak, S. Network biology concepts in complex disease comorbidities. Nat. Rev. Genet. 17, 615–629 (2016).

    Article  CAS  Google Scholar 

  15. Zitnik, M. et al. Evolution of resilience in protein interactomes across the tree of life. Proc. Natl Acad. Sci. USA 116, 4426–4433 (2019).

    Article  CAS  Google Scholar 

  16. Agrawal, M., Zitnik, M. & Leskovec, J. Large-scale analysis of disease pathways in the human interactome. In Pac. Symp. Biocomput. 23, 111–122 (2018).

    Google Scholar 

  17. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J. Next-generation machine learning for biological networks. Cell 173, 1581–1592 (2018).

    Article  CAS  Google Scholar 

  18. Zhang, Z., Cui, P. & Zhu, W. Deep learning on graphs: a survey. In IEEE Transactions on Knowledge and Data Engineering Vol. 34, 249–270 (IEEE, 2020).

  19. Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: methods and applications. IEEE Data Eng. Bull 40, 52–74 (2017).

    Google Scholar 

  20. Hamilton, W. L. in Synthesis Lectures on Artificial Intelligence and Machine Learning Vol. 14, 1–159 (Morgan and Claypool, 2020).

  21. Wu, Z. et al. A comprehensive survey on graph neural networks. In IEEE Transactions on Neural Networks and Learning Systems Vol. 32, 4–24 (IEEE, 2020).

  22. Chen, F., Wang, Y.-C., Wang, B. & Kuo, C.-C. J. Graph representation learning: a survey. In APSIPA Transactions on Signal and Information Processing Vol. 9, E15 (Cambridge Univ. Press, 2020).

  23. Li, B. & Pi., D. Network representation learning: a systematic literature review. Neural Comput. Appl. 34, 16647–16679 (2020).

    Article  Google Scholar 

  24. Yue, X. et al. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 36, 1241–1251 (2020).

    CAS  Google Scholar 

  25. Dong, Y., Hu, Z., Wang, K., Sun, Y. & Tang, J. Heterogeneous network representation learning. In Proc. 29th International Joint Conference on Artificial Intelligence 4861–4867 (IJCAI, 2020).

  26. Kazemi, S. M. et al. Representation learning for dynamic graphs: a survey. J Mach. Learn. Res. 21, 1–73 (2020).

    Google Scholar 

  27. Zitnik, M. et al. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion 50, 71–91 (2019).

    Article  Google Scholar 

  28. Cowen, L., Ideker, T., Raphael, B. J. & Sharan, R. Network propagation: a universal amplifier of genetic associations. Nat. Rev. Genet. 18, 551–562 (2017).

    Article  CAS  Google Scholar 

  29. Blevins, A. S. & Bassett, D. S. in Handbook of the Mathematics of the Arts and Sciences (ed. Sriraman, B.) 2073–2095 (Springer, 2020).

  30. Koutrouli, M., Karatzas, E., Paez-Espino, D. & Pavlopoulos, G. A. A guide to conquer the biological network era using graph theory. Front. Bioeng. Biotechnol. 8, 34 (2020).

    Article  Google Scholar 

  31. Liu, C. et al. Computational network biology: data, models, and applications. Phys. Rep. 846, 1–66 (2020).

    Article  Google Scholar 

  32. Rai, A., Shinde, P. & Jalan, S. Network spectra for drug-target identification in complex diseases: new guns against old foes. Appl. Netw. Sci. 3, 51 (2018).

    Article  Google Scholar 

  33. David, L., Thakkar, A., Mercado, R. & Engkvist, O. Molecular representations in AI-driven drug discovery: a review and practical guide. J. Cheminformatics 12, 56 (2020).

    Article  CAS  Google Scholar 

  34. Wieder, O. et al. A compact review of molecular property prediction with graph neural networks. Drug Discov. Today. Technol. 37, 1–12 (2020).

    Article  Google Scholar 

  35. Hetzel, L., Fischer, D. S., Günnemann, S. & Theis, F. J. Graph representation learning for single cell biology. Curr. Opin. Syst. Biol. 28, 100347 (2021).

    Article  CAS  Google Scholar 

  36. Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

    Article  Google Scholar 

  37. Sun, M. et al. Graph convolutional networks for computational drug development and discovery. Brief. Bioinform. 21, 919–935 (2020).

    Article  Google Scholar 

  38. Gaudelet, T. et al. Utilizing graph machine learning within drug discovery and development. Brief. Bioinform. 22, bbab159 (2021).

    Article  Google Scholar 

  39. MacLean, F. Knowledge graphs and their applications in drug discovery. Expert Opin. Drug Discov 16, 1057–1069 (2021).

    Article  CAS  Google Scholar 

  40. Zeng, X., Tu, X., Liu, Y., Fu, X. & Su, Y. Toward better drug discovery with knowledge graph. Curr. Opin. Struct. Biol. 72, 114–126 (2022).

    Article  CAS  Google Scholar 

  41. Ahmedt-Aristizabal, D., Armin, M. A., Denman, S., Fookes, C. & Petersson, L. A survey on graph-based deep learning for computational histopathology. Comput. Med. Imaging Graph. 95, 102027 (2021).

    Article  Google Scholar 

  42. Muzio, G., O’Bray, L. & Borgwardt, K. Biological network analysis with deep learning. Brief. Bioinform. 22, 1515–1530 (2021).

    Article  Google Scholar 

  43. Guo, M. et al. Analysis of disease comorbidity patterns in a large-scale China population. BMC Med. Genomics 12, 177 (2019).

    Google Scholar 

  44. Le, D.-H. & Dang, V.-T. Ontology-based disease similarity network for disease gene prediction. Vietnam J. Comput. Sci. 3, 197–205 (2016).

    Article  Google Scholar 

  45. Menche, J. et al. Uncovering disease-disease relationships through the incomplete interactome. Science 347, 1257601 (2015).

    Article  Google Scholar 

  46. Sumathipala, M., Maiorino, E., Weiss, S. T. & Sharma, A. Network diffusion approach to predict lncrna disease associations using multi-type biological networks: Lion. Front. Physiol. 10, 888 (2019).

    Article  Google Scholar 

  47. Cheng, F., Kovács, I. A. & Barabási, A.-L. Network-based prediction of drug combinations. Nat. Commun. 10, 1197 (2019).

    Article  Google Scholar 

  48. Cheng, F. et al. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 10, 3476 (2019).

    Article  Google Scholar 

  49. Chen, Z.-H. et al. Prediction of drug–target interactions from multi-molecular network based on deep walk embedding model. Front. Bioeng. Biotechnol. 8, 338 (2020).

    Article  Google Scholar 

  50. Wong, L. et al. MIPDH: a novel computational model for predicting microRNA–mRNA interactions by DeepWalk on a heterogeneous network. ACS Omega 5, 17022–17032 (2020).

    Article  CAS  Google Scholar 

  51. Yang, K. et al. HerGePred: heterogeneous network embedding representation for disease gene prediction. IEEE J. Biomed. Health Inform. 23, 1805–1815 (2018).

    Article  Google Scholar 

  52. Geng, C. et al. iScore: a novel graph kernel-based function for scoring protein–protein docking models. Bioinformatics 36, 112–121 (2020).

    Article  CAS  Google Scholar 

  53. Veselkov, K. et al. HyperFoods: machine intelligent mapping of cancer-beating molecules in foods. Sci. Rep. 9, 9237 (2019).

    Article  Google Scholar 

  54. Zheng, A. & Casari, A. Distributed multi-task classification: a decentralized online learning approach. Mach. Learn. 107, 727–747 (2018).

    Article  Google Scholar 

  55. Perozzi, B., Al-Rfou, R. & Skiena, S. DeepWalk: online learning of social representations. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 701–710 (ACM, 2014).

  56. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. & Dean, J. Distributed representations of words and phrases and their compositionality. In Proc. 26th International Conference on Neural Information Processing Systems Vol. 2 (eds Burges, C. J. et al.) 3111–3119 (Curran Associates, 2013).

  57. Grover, A. & Leskovec, J. Node2vec: scalable feature learning for networks. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 855–864 (ACM, 2016).

  58. Tang, J. et al. LINE: Large-scale information network embedding. In Proc. ACM Web Conference 1067–1077 (ACM, 2015).

  59. Dong, Y., Chawla, N. V. & Swami, A. metapath2vec: scalable representation learning for heterogeneous networks. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 135–144 (ACM, 2017).

  60. Bordes, A., Usunier, N., García-Durán, A., Weston, J. & Yakhnenko, O. Translating embeddings for modeling multi-relational data. In Proc. 26th International Conference on Neural Information Processing Systems Vol. 2 (eds Burges, C. J. et al.) 2787–2795 (Curran Associates, 2013).

  61. Nickel, M., Tresp, V. & Kriegel, H. A three-way model for collective learning on multi-relational data. In Proc. 28th International Conference on International Conference on Machine Learning 809–816 (PMLR, 2011).

  62. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É. & Bouchard, G. Complex embeddings for simple link prediction. In Proc. 33rd International Conference on International Conference on Machine Learning Vol. 48 (eds Balcan, M. F. & Weinberger, K. Q.) 2071–2080 (PMLR, 2016).

  63. Sun, Z., Deng, Z., Nie, J. & Tang, J. RotatE: knowledge graph embedding by relational rotation in complex space. In International Conference on Learning Representations (2019).

  64. Yang, B., Yih, W., He, X., Gao, J. & Deng, L. Embedding entities and relations for learning and inference in knowledge bases. In International Conference on Learning Representations (2015).

  65. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning Vol. 70, 1263–1272 (PMLR, 2017).

  66. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).

  67. Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In International Conference on Learning Representations (2019).

  68. Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. In Proc. 28th International Conference on Neural Information Processing Systems Vol. 2 (eds Cortes, C. et al.) 2224–2232 (ACM, 2015).

  69. Vinyals, O., Bengio, S. & Kudlur, M. Order matters: sequence to sequence for sets. In International Conference on Learning Representations (2016).

  70. Defferrard, M., Bresson, X. & Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In Proc. International Conference on Neural Information Processing Systems (eds Lee, D. et al.) 3844–3852 (Curran Associates, 2016).

  71. Velickovic, P. et al. Graph attention networks. In International Conference on Learning Representations (2018).

  72. Hu, Z., Dong, Y., Wang, K. & Sun, Y. Heterogeneous graph transformer. In Proc. ACM Web Conference 2704–2710 (ACM, 2020).

  73. Yun, S., Jeong, M., Kim, R., Kang, J. & Kim, H. J. Graph transformer networks. In Proc. 33rd Conference on Neural Information Processing Systems (eds Wallach, H. et al.) (Curran Associates, 2019).

  74. Yan, S., Xiong, Y. & Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proc. AAAI Conference on Artificial Intelligence (eds McIlraith, S. A. & Weinberger, K. Q.) 7444–7452 (AAAI, 2018).

  75. Choi, E. et al. Learning the graphical structure of electronic health records with graph convolutional transformer. In Proc. AAAI Conference on Artificial Intelligence Vol. 34, 606–613 (AAAI, 2020).

  76. Xu, K. et al. Representation learning on graphs with jumping knowledge networks. In Proc. 35th International Conference on MachineLearning 5482–5493 (PMLR, 2018).

  77. Abu-El-Haija, S. et al. MixHop: higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proc. 36th International Conference on MachineLearning (PMLR, 2019).

  78. Ying, Z. et al. Hierarchical graph representation learning with differentiable pooling. In Proc. 32nd International Conference on Neural Information Processing Systems (eds Bengio, S et al.) 4805–4815 (Curran Associates, 2018).

  79. Schütt, K. et al. Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. In 31st Conference on Neural Information Processing Systems (eds Guyon, I. et al.) (Curran Associates, 2017).

  80. Klicpera, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs. In International Conference on Learning Representations (2020).

  81. Chiang, W. et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 257–266 (ACM, 2019).

  82. Zeng, H., Zhou, H., Srivastava, A., Kannan, R. & Prasanna, V. K. GraphSAINT: graph sampling based inductive learning method. In International Conference on Learning Representations (2020).

  83. Schlichtkrull, M. et al. Modeling relational data with graph convolutional networks. In European Semantic Web Conference (eds Gangemi, A. et al.) 593–607 (Springer, 2018).

  84. Wang, X. et al. Heterogeneous graph attention network. In Proc. ACM Web Conference (eds Liu, L. & White, R.) 2022–2032 (ACM, 2019).

  85. Pareja, A. et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs. In Proc. 34th AAAI Conference on Artificial Intelligence Vol. 34 5363–5370 (AAAI, 2020).

  86. Rossi, E. et al. Temporal graph networks for deep learning on dynamic graphs. In International Conference on Machine Learning Workshop on Graph Representation Learning and Beyond (2020).

  87. Huang, K. & Zitnik, M. Graph meta learning via local subgraphs. In Proc. International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 5862–5874 (Curran Associates, 2020).

  88. Hu, W. et al. Strategies for pre-training graph neural networks. In International Conference on Learning Representations (2020).

  89. You, Y., Chen, T., Wang, Z. & Shen, Y. When does self-supervision help graph convolutional networks? In International Conference on Machine Learning (eds Daumé, H. & Singh, A.) 10871–10880 (JMLR, 2020).

  90. Erdös, P. & Rényi, A. On the Rvolution of Random Graphs (Mathematical Institute of the Hungarian Academy of Sciences, 1960).

  91. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  92. Barabási A.-L. et al. Network Science (Cambridge Univ. Press, 2016).

  93. Jin, W., Barzilay, R. & Jaakkola, T. S. Junction tree variational autoencoder for molecular graph generation. In International Conference on Machine Learning (PMLR, 2018).

  94. Kipf, T. N. & Welling, M. Variational graph auto-encoders. In Advances in Neural Information Processing Systems Bayesian Deep Learning Workshop (2016).

  95. Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article  Google Scholar 

  96. Wang, H. et al. GraphGAN: Graph representation learning with generative adversarial nets. In Proc. 32nd AAAI Conference on Artificial Intelligence (AAAI, 2018).

  97. Simonovsky, M. & Komodakis, N. GraphVAE: towards generation of small graphs using variational autoencoders. In International Conference on Artificial Neural Networks (Springer, 2018).

  98. You, J., Liu, B., Ying, R., Pande, V. & Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation. In Proc. International Conference on Neural Information Processing Systems (eds Bengio S. et al.) (Curran Associates, 2018).

  99. You, J., Ying, R., Ren, X., Hamilton, W. L. & Leskovec, J. GraphRNN: generating realistic graphs with deep auto-regressive models. In International Conference on Machine Learning (2018).

  100. Yang, F., Fan, K., Song, D. & Lin, H. Graph-based prediction of protein–protein interactions with attributed signed graph embedding. BMC Bioinf. 21, 323 (2020).

    Article  CAS  Google Scholar 

  101. Huang, K., Xiao, C., Glass, L. M., Zitnik, M. & Sun, J. SkipGNN: predicting molecular interactions with skip-graph networks. Sci. Rep. 10, 21092 (2020).

    Article  CAS  Google Scholar 

  102. Yin, N. et al. Synergistic and antagonistic drug combinations depend on network topology. PLoS ONE 9, e93960 (2014).

    Article  Google Scholar 

  103. Fan, K. & Zhang, Y. Pseudo2GO: A graph-based deep learning method for pseudogene function prediction by borrowing information from coding genes. Front. Genet. 11, 807 (2020).

    Article  CAS  Google Scholar 

  104. Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30, 595–608 (2016).

    Article  CAS  Google Scholar 

  105. Dutil, F., Cohen, J. P., Weiss, M., Derevyanko, G. & Bengio, Y. Towards gene expression convolutions using gene interaction graphs. In International Conference on Machine Learning Workshop on Computational Biology (2018).

  106. Hamilton, W. L., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In Proc. International Conference on Neural Information Processing Systems (eds Guyon, I. et al.) (Curran Associates, 2017).

  107. Huan, J. et al. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs. J. Comput. Biol. 12, 657–671 (2005).

    Article  CAS  Google Scholar 

  108. Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. In Proc. International Conference on Neural Information Processing Systems (eds Guyon, I. et al.) (Curran Associates, 2019).

  109. Ingraham, J., Garg, V. K., Barzilay, R. & Jaakkola, T. S. Generative models for graph-based protein design. In Proc. International Conference on Neural Information Processing Systems (eds Wallach, H. et al.) (Curran Associates, 2019).

  110. Jin, W., Barzilay, R. & Jaakkola, T. Hierarchical generation of molecular graphs using structural motifs. In International Conference on Machine Learning 4552–4561 (2020).

  111. Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. W. Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 4, 828–849 (2019).

    Article  CAS  Google Scholar 

  112. Guo, X. & Zhao, L. A systematic survey on deep generative models for graph generation. In Association for Computing Machinery (ACM, 2020).

  113. Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).

    Article  CAS  Google Scholar 

  114. Cao, Y. & Shen, Y. Energy-based graph convolutional networks for scoring protein docking models. Proteins Struct. Funct. Bioinf. 88, 1091–1099 (2020).

    Article  CAS  Google Scholar 

  115. Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402–408 (2020).

    Article  CAS  Google Scholar 

  116. Li, D. & Gao, J. Towards perturbation prediction of biological networks using deep learning. Sci. Rep. 9, 11941 (2019).

    Article  Google Scholar 

  117. Liu, Y., Yuan, H., Cai, L., & Ji, S. Deep learning of high-order interactions for protein interface prediction. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 679–687 (ACM, 2020).

  118. Yao, H., Guan, J. & Liu, T. Denoising protein-protein interaction network via variational graph auto-encoder for protein complex detection. J. Bioinform. Comput. Biol. 18, 2040010 (2020).

    Article  CAS  Google Scholar 

  119. Moreau, Y. & Tranchevent, L.-C. Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nat. Rev. Genet. 13, 523–536 (2012).

    Article  CAS  Google Scholar 

  120. Zitnik, M. et al. Gene prioritization by compressive data fusion and chaining. PLoS Comput. Biol. 11, 1004552 (2015).

    Article  Google Scholar 

  121. Zhou, H., Beltran, F. & Brito, I. L. Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Sci. Adv. 7, eabj5056 2021.

  122. The Gene Ontology Consortium. The Gene Ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47, D330–D338 (2019).

    Article  Google Scholar 

  123. Zhou, G., Wang, J., Zhang, X. & Yu, G. DeepGOA: predicting gene ontology annotations of proteins via graph convolutional network. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1836–1841 (IEEE, 2019).

  124. Fan, K., Guan, Y. & Zhang, Y. Graph2GO: a multi-modal attributed network embedding method for inferring protein functions. GigaScience 9, giaa081 (2020).

    Article  Google Scholar 

  125. Hasibi, R. & Michoel, T. A Graph feature auto-encoder for the prediction of unobserved node features on biological networks. BMC Bioinform 22, 525 (2021).

    Article  Google Scholar 

  126. Cao, M. et al. Going the distance for protein function prediction: a new distance metric for protein interaction networks. PLoS ONE 8, e76339 (2013).

    Article  CAS  Google Scholar 

  127. Dey, T. K. & Mandal, S. Protein classification with improved topological data analysis. In 18th International Workshop on Algorithms in Bioinformatics (WABI) (eds Parida, L. & Ukkonen, E.) 6:1–6:13 (Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018).

  128. Martino, A., Rizzi, A. & Mascioli, F. M. F. Supervised approaches for protein function prediction by topological data analysis. In 2018 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2018).

  129. Nambiar, A. et al. Transforming the language of life: transformer neural networks for protein prediction tasks. In 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics (ACM, 2020).

  130. Vig, J. et al. Bertology meets biology: interpreting attention in protein language models. In International Conference on Learning Representations (2021).

  131. Han, P. et al. GCN-MF: disease–gene association identification by graph convolutional networks and matrix factorization. In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining 705–713 (ACM, 2019).

  132. Mandal, S., Guzmán-Sáenz, A., Haiminen, N., Basu, S. & Parida, L. A topological data analysis approach on predicting phenotypes from gene expression data. In International Conference on Algorithms for Computational Biology (eds Martín-Vide, C. et al.) 178–187 (Springer, 2020).

  133. Nicolau, M., Levine, A. J. & Carlsson, G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl Acad. Sci. USA 108, 7265–7270 (2011).

    Article  CAS  Google Scholar 

  134. Yang, C., Zhuang, P., Shi, W., Luu, A. & Li, P. Conditional structure generation through graph variational generative adversarial nets. In Proc. International Conference on Neural Information Processing Systems (eds Wallach, H. et al.) 124632 (Curran Associates, 2019).

  135. Chereda, H., Bleckmann, A., Kramer, F., Leha, A. & Beissbarth, T. in German Medical Data Sciences: Shaping Change—Creative Solutions for Innovative Medicine (eds Röhrig, R. et al) 181–186 (GMDS, 2019).

  136. Crawford, J. & Greene, C. S. Incorporating biological structure into machine learning models in biomedicine. Curr. Opin. Biotechnol. 63, 126–134 (2020).

    Article  CAS  Google Scholar 

  137. Rhee, S., Seo, S. & Kim, S. Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. In Proc. Twenty-Seventh International Joint Conference on Artificial Intelligence 3527–3534 (International Joint Conferences on Artificial Intelligence Organization, 2018).

  138. Ramirez, R. et al. Classification of cancer types using graph convolutional neural networks. Front. Phys. 8, 203 (2020).

    Article  Google Scholar 

  139. Liu, S., Grau, B., Horrocks, I. & Kostylev, E. INDIGO: GNN-based inductive knowledge graph completion using pair-wise encoding. In Proc. International Conference on Neural Information Processing Systems (eds Ranzato, S. et al.) 2034–2045 (Curran Associates, 2021).

  140. Rizvi, A. H. et al. Single-cell topological rna-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 35, 551–560 (2017).

    Article  CAS  Google Scholar 

  141. Burkhardt, D. B. et al. Quantifying the effect of experimental perturbations at single-cell resolution. Nat. Biotechnol. 39, 619–629 (2021).

    Article  CAS  Google Scholar 

  142. Ravindra, N., Sehanobish, A., Pappalardo, J. L., Hafler, D. A. & van Dijk, D. Disease state prediction from single-cell data using graph attention networks. In Conference on Health, Inference, and Learning 121–130 (ACM, 2020).

  143. Huang, K. scGNN: scRNA-seq dropout imputation via induced hierarchical cell similarity graph. In International Conference on Machine Learning Workshop on Computational Biology (2020).

  144. Wang, J. et al. scGNN is a novel graph neural network framework for single-cell RNA-seq analyses. Nat. Commun. 12, 1882 (2021).

    Article  CAS  Google Scholar 

  145. Chen, H., Ryu, J., Vinyard, M. E., Lerer, A. & Pinello, L. SIMBA: Single-cell embedding along with features. Preprint at bioRxiv https://doi.org/10.1101/2021.10.17.464750 (2021).

  146. Buterez, D., Bica, I., Tariq, I., Andrés-Terré, H. & Liò, P. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks. Bioinformatics 38, 1277–1286 (2021).

    Article  Google Scholar 

  147. Marx, V. Method of the year: spatially resolved transcriptomics. Nat. Methods 18, 9–14 (2021).

    Article  CAS  Google Scholar 

  148. Yuan, Y. & Bar-Joseph, Z. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol 21, 300 (2020).

    Article  Google Scholar 

  149. Partel, G. & Wählby, C. Spage2vec: Unsupervised representation of localized spatial gene expression signatures. FEBS J 288, 1859–1870 (2021).

    Article  CAS  Google Scholar 

  150. Meinshausen, N. et al. Methods for causal inference from gene perturbation experiments and validation. Proc. Natl Acad. Sci. USA 113, 7361–7368 (2016).

    Article  CAS  Google Scholar 

  151. Guney, E., Menche, J., Vidal, M. & Barábasi, A.-L. Network-based in silico drug efficacy screening. Nat. Commun. 7, 10331 (2016).

    Article  CAS  Google Scholar 

  152. Cheng, F. et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 9, 2691 (2018).

    Article  Google Scholar 

  153. Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).

    Article  CAS  Google Scholar 

  154. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    Article  CAS  Google Scholar 

  155. Xie, Y. et al. MARS: Markov molecular sampling for multi-objective drug discovery. In International Conference on Learning Representations (2021).

  156. Alagappan, M., Jiang, D., Denko, N. & Koong, A. C. in Tumor Microenvironment (eds Koumenis, C. et al.) 253–268 (Springer, 2016).

  157. Thafar, M. A. et al. DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J. Cheminformatics 12, 44 (2020).

    Article  CAS  Google Scholar 

  158. Thafar, M. A. et al. DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning. J. Cheminformatics 13, 71 (2021).

    Article  Google Scholar 

  159. Ma, T., Xiao, C., Zhou, J. & Wang, F. Drug similarity integration through attentive multi-view graph auto-encoders. In Proc. Twenty-Seventh International Joint Conference on Artificial Intelligence (ed. Lang, J.) 3477–3483 (AAAI, 2018).

  160. Jiang, M. et al. Drug–target affinity prediction using graph neural network and contact maps. RSC Adv 10, 20701–20712 (2020).

    Article  CAS  Google Scholar 

  161. Chen, L. et al. TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics 36, 4406–4414 (2020).

    Article  CAS  Google Scholar 

  162. Quan, Z., Guo, Y., Lin, X., Wang, Z.-J. & Zeng, X. GraphCPI: Graph neural representation learning for compound-protein interaction. In BIBM 717–722 (2019).

  163. Tsubaki, M., Tomii, K. & Sese, J. Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35, 309–318 (2019).

    Article  CAS  Google Scholar 

  164. Lin, X. et al. DeepGS: Deep representation learning of graphs and sequences for drug-target binding affinity prediction. ECAI (2020).

  165. Guo, Z.-H. et al. MeSHHeading2vec: a new method for representing mesh headings as vectors based on graph embedding algorithm. Brief. Bioinform. 21, 1641–1662 (2020).

    Article  CAS  Google Scholar 

  166. Wang, R., Li, S., Cheng, L., Wong, M. H. & Leung, K. S. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning. BMC Bioinf. 20, 628 (2019).

    Article  Google Scholar 

  167. Wan, F., Hong, L., Xiao, A., Jiang, T. & Zeng, J. NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions. Bioinformatics 35, 104–111 (2019).

    Article  CAS  Google Scholar 

  168. Xie, Y., Peng, J. & Zhou, Y. Integrating protein–protein interaction information into drug response prediction by graph neural encoding. Preprint at Research Square https://doi.org/10.21203/rs.2.18936/v1 (2019).

  169. Alsentzer, E., Finlayson, S. G., Li, M. M. & Zitnik, M. Subgraph neural networks. In Proc. International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 8017–8029 (Curran Associates, 2020).

  170. Buphamalai, P., Kokotovic, T., Nagy, V. & Menche, J. Network analysis reveals rare disease signatures across multiple levels of biological organization. Nat. Commun. 12, 6306 (2021).

    Article  CAS  Google Scholar 

  171. Barisoni, L., Lafata, K. J., Hewitt, S. M., Madabhushi, A. & Balis, U. G. Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16, 669–685 (2020).

    Article  Google Scholar 

  172. Gurcan, M. N. et al. Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009).

    Article  Google Scholar 

  173. Choi, E., Bahadori, M. T., Song, L., Stewart, W. F. & Sun, J. GRAM: graph-based attention model for healthcare representation learning. In Proc. 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 787–795 (ACM, 2017).

  174. Li, Y., Qian, B., Zhang, X. & Liu, H. Graph neural network-based diagnosis prediction. Big Data 8, 379–390 (2020).

    Article  CAS  Google Scholar 

  175. Bonito, P. et al. in Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis (eds Sudre, C. H. et al.) 208–219 (Springer, 2020).

  176. Adnan, M., Kalra, S. & Tizhoosh, H. R. Representation learning of histopathology images using graph neural networks. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 4254–4261 (IEEE, 2020).

  177. Anand, D., Gadiya, S. & Sethi, A. Histographs: graphs in histopathology. In Medical Imaging 2020: Digital Pathology (eds Tomaszewski, J. E. & Ward, A. D.) (SPIE, 2020).

  178. Zhou, Y. et al. CGC-Net: cell graph convolutional network for grading of colorectal cancer histology images. In IEEE International Conference on Computer Vision Workshops (IEEE, 2019).

  179. Jaume, G. et al. Towards explainable graph representations in digital pathology. In International Conference on Machine Learning Workshop on Computational Biology (2020).

  180. Chao, C.-H. et al. Lymph node gross tumor volume detection in oncology imaging via relationship learning using graph neural network. In 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (eds Martel, A. L. et al.) 772–782 (Springer-Verlag, 2020).

  181. An, X., Zhou, Y., Di, Y. & Ming, D. Dynamic functional connectivity and graph convolution network for Alzheimer’s disease classification. In 7th International Conference on Biomedical and Bioinformatics Engineering 1–4 (ACM, 2020).

  182. Song, T.-A. et al. Graph convolutional neural networks for Alzheimer’s disease classification. In IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) 414–417 (IEEE, 2019).

  183. Wee, C.-Y. et al. Cortical graph neural network for ad and mci diagnosis and transfer learning across populations. NeuroImage Clin 23, 101929 (2019).

    Article  Google Scholar 

  184. Mao, C., Yao, L. & Luo, Y. ImageGCN: Multi-relational image graph convolutional networks for disease identification with chest x-rays. IEEE Trans. Med. Imaging 41, 1990–2003 (2022).

    Article  Google Scholar 

  185. Levy, J., Haudenschild, C., Bar, C., Christensen, B. & Vaickus, L. Topological feature extraction and visualization of whole slide images using graph neural networks. Pac. Symp. Biocomput. 26, 285–296 (2021).

    Google Scholar 

  186. Hu, J. et al. SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18, 1342–1351 (2021).

    Article  Google Scholar 

  187. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S. & Sontag, D. Learning a health knowledge graph from electronic medical records. Sci. Rep. 7, 5994 (2017).

    Article  Google Scholar 

  188. Wu, T. et al. Representation learning of EHR data via graph-based medical entity embedding. In Advances in Neural Information Processing Systems Graph Representation Learning Workshop (2019).

  189. Mao, C., Yao, L. & Luo, Y. MedGCN: medication recommendation and lab test imputation via graph convolutional networks. J. Biomed. Inform. 127, 104000 (2022).

    Article  Google Scholar 

  190. Ma, F. et al. KAME: knowledge-based attention model for diagnosis prediction in healthcare. In 27th ACM International Conference on Information and Knowledge Management 743–752 (ACM, 2018).

  191. Sun, Z. et al. Disease prediction via graph neural networks. IEEE J. Biomed. Health Inform. 25, 818–826 (2020).

    Article  Google Scholar 

  192. Chen, I. Y., Agrawal, M., Horng, S. & Sontag, D. Robustly extracting medical knowledge from EHRs: a case study of learning a health knowledge graph. In Pac. Symp. Biocomput. 25, 19–30 (2020).

  193. Chowdhury, S., Zhang, C., Yu, P. S. & Luo, Y. Mixed pooling multi-view attention autoencoder for representation learning in healthcare. Preprint at https://arxiv.org/abs/1910.06456 (2019).

  194. Liu, S. et al. A hybrid method of recurrent neural network and graph neural network for next-period prescription prediction. Int. J. Mach. Learn. Cybern. 11, 2849–2856 (2020).

    Article  Google Scholar 

  195. Lee, D., Jiang, X. & Yu, H. Harmonized representation learning on dynamic her graphs. J. Biomed. Inform. 106, 103426 (2020).

    Article  Google Scholar 

  196. Tong, C., Rocheteau, E., Veličković, P., Lane, N. & Liò, P. in AI for DiseaseSurveillance and Pandemic Intelligence. W3PHAI 2021. Studies in Computational Intelligence Vol. 1013 (eds Shaban-Nejad, A. et al.) 281–293 (Springer, 2022).

  197. Kwak, H. et al. Drug-disease graph: predicting adverse drug reaction signals via graph neural network with clinical data. In Pacific-Asia Conference on Knowledge Discovery and Data Mining 633–644 (Springer-Verlag, 2020).

  198. Zhao, C., Jiang, J., Guan, Y., Guo, X. & He, B. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning. Artif. Intell. Med. 87, 49–59 (2018).

    Article  Google Scholar 

  199. Li, L. et al. A method to learn embedding of a probabilistic medical knowledge graph: algorithm development. JMIR Med. Inf. 8, e17645 (2020).

    Article  Google Scholar 

  200. Hosseini, A., Chen, T., Wu, W., Sun, Y. & Sarrafzadeh, M. HeteroMed: heterogeneous information network for medical diagnosis. In International Conference on Information and Knowledge Management 763–772 (ACM, 2018).

  201. Shang, J., Xiao, C., Ma, T., Li, H. & Sun, J. GameNet: graph augmented memory networks for recommending medication combination. In Proc. AAAI Conference on Artificial Intelligence 1126–1133 (AAAI, 2019).

  202. Wu, S., Chen, D. & Snyder, M. P. Network biology bridges the gaps between quantitative genetics and multi-omics to map complex diseases. Curr. Opin. Chem. Biol. 66, 102101 (2022).

    Article  CAS  Google Scholar 

  203. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? Trends Genet 37, 109–124 (2020).

    Article  Google Scholar 

  204. Wang, T., Peng, Q., Liu, B., Liu, Y. & Wang, Y. Disease module identification based on representation learning of complex networks integrated from GWAS, eQTL summaries, and human interactome. Front. Bioeng. Biotechnol. 8, 418 (2020).

    Article  Google Scholar 

  205. Dekker, J. & Misteli, T. Long-range chromatin interactions. Cold Spring Harb. Perspect. Biol. 7, a019356 (2015).

    Article  Google Scholar 

  206. Lanchantin, J. & Qi, Y. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data. Bioinformatics 36, i659–i667 (2020).

    Article  CAS  Google Scholar 

  207. Hovenga, V., Oluwadare, O. & Kalita, J. Hic-GNN: a generalizable model for 3D chromosome reconstruction using graph convolutional neural networks. Preprint at bioRxiv https://doi.org/10.1101/2021.11.29.470405 (2021).

  208. Ding, J., Sharon, N. & Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 23, 355–368 (2022).

    Article  CAS  Google Scholar 

  209. Fortelny, N. & Bock, C. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data. Genome Biol 21, 190 (2020).

    Article  Google Scholar 

  210. Machens, A. et al. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infect. Dis. 13, 185 (2013).

    Article  Google Scholar 

  211. Ying, Z., Bourgeois, D., You, J., Zitnik, M. & Leskovec, J. GNNExplainer: generating explanations for graph neural networks. In Proc. International Conference on Neural Information Processing Systems (ed Wallach, H. et al.) (Curran Associates, 2019).

  212. Agarwal, C., Lakkaraju, H. & Zitnik, M. Towards a unified framework for fair and stable graph representation learning. In Proc. Machine Learning Research (eds de Campos, C. & Maathuis, M. H.) 2114–2124 (PMLR, 2021).

  213. Zhang, X. & Zitnik, M. GNNGuard: defending graph neural networks against adversarial attacks. In Proc. International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 9263–9275 (Curran Associates, 2020).

  214. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  CAS  Google Scholar 

  215. Xu, K. et al. Representation learning on graphs with jumping knowledge networks. In Proc. 35th International Conference on MachineLearning (PMLR, 2018).

  216. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  Google Scholar 

  217. Kondratova, M. et al. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat. Commun. 10, 4808 (2019).

    Article  Google Scholar 

  218. Mohammadi, S., Davila-Velderrain, J. & Kellis, M. Reconstruction of cell-type-specific interactomes at single-cell resolution. Cell Syst 9, 559–568.e4 (2019).

    Article  CAS  Google Scholar 

  219. Li, M. M. & Zitnik, M. Deep contextual learners for protein networks. In International Conference on Machine Learning Workshop on Computational Biology (2021).

  220. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34, D535–D539 (2006).

    Article  CAS  Google Scholar 

  221. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. Cellphonedb: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

    Article  CAS  Google Scholar 

  222. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  Google Scholar 

  223. Zhang, Y. & Zhang, Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807–821 (2020).

    Article  CAS  Google Scholar 

  224. Alessandri, L. et al. Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. npj Syst. Biol. Appl. 7, 1 (2021).

    Article  CAS  Google Scholar 

  225. Tran, D. et al. Fast and precise single-cell data analysis using a hierarchical autoencoder. Nat. Commun. 12, 1029 (2021).

    Article  CAS  Google Scholar 

  226. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34, i457–i466 (2018).

    Article  CAS  Google Scholar 

  227. Jiang, P. et al. Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput. Struct. Biotechnol. J. 18, 427–438 (2020).

    Article  CAS  Google Scholar 

  228. Kim, Y. et al. Anticancer drug synergy prediction in understudied tissues using transfer learning. J. Am. Med. Iinf. Assoc. 28, 42–51 (2021).

    Article  Google Scholar 

  229. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a new Taxonomy of Disease (National Academies Press, 2011).

Download references

Acknowledgements

We gratefully acknowledge the support of the National Science Foundation, under grants IIS-2030459 and IIS-2033384, the US Air Force Contract No. FA8702-15-D-0001, the Harvard Data Science Initiative, and awards from Amazon Research, Bayer Early Excellence in Science, AstraZeneca Research, and Roche Alliance with Distinguished Scientists. M.M.L. is supported by T32HG002295 from the National Human Genome Research Institute and a National Science Foundation Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the funders.

Author information

Authors and Affiliations

Authors

Contributions

M.M.L. and M.Z. conceived the work and shaped its framing. M.M.L. performed background research and wrote the manuscript together with K.H. and M.Z. All authors discussed the content, and reviewed and edited the manuscript.

Corresponding author

Correspondence to Marinka Zitnik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Feixiong Cheng, Fabian Theis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures and references.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M.M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng 6, 1353–1369 (2022). https://doi.org/10.1038/s41551-022-00942-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-022-00942-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing