Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts

An Author Correction to this article was published on 28 May 2021

This article has been updated

Abstract

Fibrotic disease is caused by the continuous deposition of extracellular matrix by persistently activated fibroblasts (also known as myofibroblasts), even after the resolution of the injury. Using fibroblasts from porcine aortic valves cultured on hydrogels that can be softened via exposure to ultraviolet light, here we show that increased extracellular stiffness activates the fibroblasts, and that cumulative tension on the nuclear membrane and increases in the activity of histone deacetylases transform transiently activated fibroblasts into myofibroblasts displaying condensed chromatin with genome-wide alterations. The condensed structure of the myofibroblasts is associated with cytoskeletal stability, as indicated by the inhibition of chromatin condensation and myofibroblast persistence after detachment of the nucleus from the cytoskeleton via the displacement of endogenous nesprins from the nuclear envelope. We also show that the chromatin structure of myofibroblasts from patients with aortic valve stenosis is more condensed than that of myofibroblasts from healthy donors. Our findings suggest that nuclear mechanosensing drives distinct chromatin signatures in persistently activated fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Extended culture on stiff microenvironments induces persistence of myofibroblast activation.
Fig. 2: Extended culture on stiff microenvironments reduces chromatin accessibility.
Fig. 3: ATAC sequencing reveals a global reduction in chromatin accessibility in persistent myofibroblasts relative to transiently activated myofibroblasts.
Fig. 4: Chromatin remodelling is necessary for myofibroblast persistence.
Fig. 5: A stabilized actin cytoskeleton is required for myofibroblast persistence.
Fig. 6: The actin cytoskeleton increases nuclear tension to promote myofibroblast persistence.
Fig. 7: The LINC complex promotes myofibroblast persistence.
Fig. 8: Mechanism for stiffness-induced myofibroblast persistence.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the results in this study are available within the paper and its Supplementary Information. The ATAC-seq data are available through the Gene Expression Omnibus under the accession code GSE167892. The raw and analysed datasets generated during the study are too large to be publicly shared, yet they are available from the corresponding authors on reasonable request.

Change history

References

  1. Rockey, D. C., Darwin Bell, P. & Hill, J. A. Fibrosis-a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van De Water, L., Varney, S. & Tomasek, J. J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv. Wound Care 2, 122–141 (2013).

    Article  Google Scholar 

  5. Kis, K., Liu, X. & Hagood, J. S. Myofibroblast differentiation and survival in fibrotic disease. Expert Rev. Mol. Med. 13, e27 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang, C. & Ogawa, R. Fibroproliferative disorders and their mechanobiology. Connect. Tissue Res. 53, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

    Article  CAS  Google Scholar 

  9. Caliari, S. R. et al. Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression. Integr. Biol. 8, 720–728 (2016).

    Article  Google Scholar 

  10. Lunyak, V. V. & Rosenfeld, M. G. Epigenetic regulation of stem cell fate. Hum. Mol. Genet. 17, R28–R36 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Perino, M. & Veenstra, J. Chromatin control of developmental dynamics and plasticity. Dev. Cell 38, 610–620 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Hu, B., Gharaee-Kermani, M., Wu, Z. & Phan, S. H. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am. J. Pathol. 177, 21–28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duong, T. E. & Hagood, J. S. Epigenetic regulation of myofibroblast phenotypes in fibrosis. Curr. Pathobiol. Rep. 6, 79–96 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Y., Tang, C. B. & Kilian, K. A. Matrix mechanics influence fibroblast–myofibroblast transition by directing the localization of histone deacetylase 4. Cell. Mol. Bioeng. 10, 405–415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang, S. K. et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 4, e621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 13, 405–414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell. Culture 103, 655–663 (2010).

    Google Scholar 

  19. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, H., Tibbitt, M. W., Langer, S. J., Leinwand, L. A. & Anseth, K. S. Hydrogels preserve native phenotypes of valvular fibroblasts through an elasticity-regulated PI3K/AKT pathway. Proc. Natl Acad. Sci. USA 110, 19336–19341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, H., Killaars, A. R., DelRio, F. W., Yang, C. & Anseth, K. S. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials 131, 131–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong, D. Y., Ranganath, T. & Kasko, A. M. Low-dose, long-wave UV light does not affect gene expression of human mesenchymal stem cells. PLoS ONE 10, e0139307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ruskowitz, E. R. & Deforest, C. A. Proteome-wide analysis of cellular response to ultraviolet light for biomaterial synthesis and modification. ACS Biomater. Sci. Eng. 5, 2111–2116 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez, A. G., Schroeder, M. E., Walker, C. J. & Anseth, K. S. FGF-2 inhibits contractile properties of valvular interstitial cell myofibroblasts encapsulated in 3D MMP-degradable hydrogels. APL Bioeng. 2, 046104 (2018).

    Article  Google Scholar 

  25. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, A. C., Joag, V. R. & Gotlieb, A. I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171, 1407–1418 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

  28. Irianto, J. et al. Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. 104, 759–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, K. et al. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell. Biol. 36, 662–667 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  31. Egan, B. et al. An alternative approach to ChIP-Seq normalization enables detection of genome-wide changes in histone H3 lysine 27 trimethylation upon EZH2 inhibition. PLoS ONE 11, e0166438 (2016).

  32. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. https://doi.org/10.1101/gr.136184.111 (2012).

  33. Rubin, J. D. et al. Transcription factor enrichment analysis (TFEA): quantifying the activity of hundreds of transcription factors from a single experiment. Preprint at bioRxiv https://doi.org/10.1101/2020.01.25.919738 (2020).

  34. Toth, K. F. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J. Cell Sci. 117, 4277–4287 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Szczesny, S. E. & Mauck, R. L. The nuclear option: evidence implicating the cell nucleus in mechanotransduction. J. Biomech. Eng. 139, 021006 (2017).

    Article  Google Scholar 

  36. Downing, T. L. et al. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12, 1154–1162 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Cho, S., Irianto, J. & Discher, D. E. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramdas, N. M. & Shivashankar, G. V. Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Keeling, M. C., Flores, L. R., Dodhy, A. H., Murray, E. R. & Gavara, N. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci. Rep. 7, 5219 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Swift, J. et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Naetar, N., Ferraioli, S. & Foisner, R. Lamins in the nuclear interior—life outside the lamina. J. Cell Biol. 130, 2087–2096 (2017).

    CAS  Google Scholar 

  43. González-Cruz, R. D., Dahl, K. N. & Darling, E. M. The emerging role of Lamin C as an important LMNA isoform in mechanophenotype. Front. Cell Dev. Biol. 6, 151 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular mechanosensor. Nat. Cell Biol. 20, 373–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arsenovic, P. T. et al. Nesprin-2G, a component of the nuclear LINC Complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crowder, S. W., Leonardo, V., Whittaker, T., Papathanasiou, P. & Stevens, M. M. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18, 39–52 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stowers, R. S. et al. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3, 1009–1019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Killaars, A. R. et al. Extended exposure to stiff microenvironments leads to persistent chromatin remodeling in human mesenchymal stem cells. Adv. Sci. 6, 1801483 (2018).

    Article  Google Scholar 

  51. Heo, S. J. et al. Biophysical regulation of chromatin architecture instills a mechanical memory in mesenchymal stem cells. Sci. Rep. 5, 16895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerardo, H. et al. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Sci. Rep. 9, 9086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Monzack, E. L. & Masters, K. S. Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. J. Heart Valve Dis. 20, 449–463 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. Schaefer, A. et al. Analysis of fibrosis in control or pressure overloaded rat hearts after mechanical unloading by heterotopic heart transplantation. Sci. Rep. 9, 5710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang, X., Chen, B., Liu, T. & Chen, X. Reversal of myofibroblast differentiation: a review. Eur. J. Pharm. 734, 83–90 (2014).

    Article  CAS  Google Scholar 

  56. Turner, N. A. & Porter, K. E. Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis Tissue Repair 6, 5 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramos, C. et al. Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am. J. Respir. Cell Mol. Biol. 24, 591–598 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Hecker, L. et al. Reversal of persistent fibrosis in aging by targeting Nox4–Nrf2 redox imbalance. Sci. Transl. Med. 6, 231ra47 (2015).

  60. Sanders, Y. Y. et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol. 1, 8–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Cho, S., Irianto, J. & Discher, D. E. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu, X. et al. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat. Commun. 10, 1695 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Swift, J. & Discher, D. E. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue. J. Cell Sci. 127, 3005–3015 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Buxboim, A., Ivanovska, I. L. & Discher, D. E. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in? J. Cell Sci. 123, 297–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bouzid, T. et al. The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. J. Biol. Eng. 13, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ho, C. Y., Jaalouk, D. E., Vartiainen, M. K. & Lammerding, J. Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature 497, 507–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rashmi, R. N. et al. The nuclear envelope protein Nesprin-2 has roles in cell proliferation and differentiation during wound healing. Nucleus 3, 172–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Görisch, S. M., Wachsmuth, M., Tóth, K. F., Lichter, P. & Rippe, K. Histone acetylation increases chromatin accessibility. J. Cell Sci. 118, 5825–5834 (2005).

    Article  PubMed  Google Scholar 

  71. Milon, B. C. et al. Role of histone deacetylases in gene regulation at nuclear lamina. PLoS ONE 7, e49692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mattioli, E. et al. Altered modulation of lamin A/C-HDAC2 interaction and p21 expression during oxidative stress response in HGPS. Aging Cell 17, e12824 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Serebryannyy, L. A., Cruz, C. M. & De Lanerolle, P. A role for nuclear actin in HDAC 1 and 2 regulation. Sci. Rep. 6, 28460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Killaars, A. R., Walker, C. J. & Anseth, K. S. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc. Natl Acad. Sci. USA 117, 21258–21266 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lyu, X., Hu, M., Peng, J., Zhang, X. & Sanders, Y. Y. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther. Adv. Chronic Dis. 10, 2040622319862697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Renaud, L. et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ. Heart Fail. 8, 1094–1104 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saito, S. et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ–PI3K–Akt pathway. PLoS ONE 12, e0186615 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J. & Anseth, K. S. Engineering precision biomaterials for personalized medicine. Sci. Transl. Med. 10, eaam8645 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aguado, B. A. et al. Transcatheter aortic valve replacements alter circulating serum factors to mediate myofibroblast deactivation. Sci. Transl. Med. 11, eaav3233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ceccato, T. L. et al. Defining the cardiac fibroblast secretome in a fibrotic microenvironment. J. Am. Heart Assoc. https://doi.org/10.1161/jaha.120.017025 (2020)

  81. Grim, J. C. et al. Secreted factors from proinflammatory macrophages promote an osteoblast-like phenotype in valvular interstitial cells. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.120.315261 (2020).

  82. Liu, H., Sun, Y. & Simmons, C. A. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J. Biomech. 46, 1967–1971 (2013).

    Article  PubMed  Google Scholar 

  83. Wyss, K. et al. The elastic properties of valve interstitial cells undergoing pathological differentiation. J. Biomech. 45, 882–887 (2012).

    Article  PubMed  Google Scholar 

  84. Pho, M. et al. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. Heart Circ. Physiol. 294, H1767–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kloxin, A. M., Tibbitt, M. W. & Anseth, K. S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5, 1867–1887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arsenovic, P. T. & Conway, D. E. in The LINC Complex (Methods in Molecular Biology series) Vol. 1840, 59–71 (Humana Press, 2018).

  87. Feige, J. N., Sage, D., Wahli, W., Desvergne, B. & Gelman, L. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Tech. 68, 51–58 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Institutes of Health (grant no. R01 HL132353). C.J.W. was supported by the National Science Foundation (training grant no. IGERT 1144807), a National Institutes of Health Predoctoral Fellowship (grant no. F31HL142223) and a Department of Education GAANN Biomaterials Fellowship. A.R.K. was supported by the National Institutes of Health (grant no. R21 AR067469). C.C. was supported by a Human Frontiers Science Program fellowship (grant no. LT001449/2017‐L) and American Heart Association postdoctoral fellowship (grant no. 20POST3521111). J.C.G. was supported by a postdoctoral fellowship from the National Institutes of Health (grant no. T32 HL007822‐20). B.A.A. acknowledges funding from the National Institutes of Health (grant no. K99 HL148542) and the Burroughs Welcome Fund Postdoctoral Enrichment Program. L.A.L. was supported by the National Institutes of Health (grant nos RHL117138-05 and R01 GM29090). R.D.D. was supported by the National Institutes of Health (grant no. RO1 GM125871). We thank the BioFrontiers Institute Next-Gen Sequencing Core Facility, which performed the Illumina sequencing and library construction. The imaging work was performed at the BioFrontiers Institute Advanced Light Microscopy Core. Laser scanning confocal microscopy was performed on a Nikon A1R microscope supported by the NIST-CU Cooperative Agreement award number 70NANB15H226. Spinning disc confocal microscopy was performed on a Nikon Ti-E microscope supported by the BioFrontiers Institute and the Howard Hughes Medical Institute. We acknowledge the BioFrontiers Computing Core at the University of Colorado Boulder for providing high-performance computing resources (grant no. NIH 1S10OD012300) supported by BioFrontiers’ IT. C.J.W. thanks T. Ceccato, A. G. Rodriguez, M. Schroeder and D. Batan for their support and feedback on project ideas; and I. Marozas for help with plasmid acquisition and advice.

Author information

Authors and Affiliations

Authors

Contributions

C.J.W., L.A.L. and K.S.A. designed all of the experiments. M.A.A. and R.D.D. advised on the development and analysis of the ATAC-seq protocol. C.J.W. and D.R. performed the ATAC-seq experiment, and D.R. analysed the ATAC-seq data. C.J.W., C.C., A.R.K., J.C.G. and K.C. performed and analysed the cell culture experiments on hydrogels. C.J.W., C.C., D.R. and B.A.A. contributed to writing the paper. L.A.L. and K.S.A. edited the paper.

Corresponding authors

Correspondence to Leslie A. Leinwand or Kristi S. Anseth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peer review information Nature Biomedical Engineering thanks Kristopher Kilian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Supplementary information

Supplementary Information

Supplementary methods, figures and tables.

Reporting Summary

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, C.J., Crocini, C., Ramirez, D. et al. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat Biomed Eng 5, 1485–1499 (2021). https://doi.org/10.1038/s41551-021-00709-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00709-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research