Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity

Abstract

Effective anticancer nanomedicines need to exhibit prolonged circulation in blood, to extravasate and accumulate in tumours, and to be taken up by tumour cells. These contrasting criteria for persistent circulation and cell-membrane affinity have often led to complex nanoparticle designs with hampered clinical translatability. Here, we show that conjugates of small-molecule anticancer drugs with the polyzwitterion poly(2-(N-oxide-N,N-diethylamino)ethyl methacrylate) have long blood-circulation half-lives and bind reversibly to cell membranes, owing to the negligible interaction of the polyzwitterion with proteins and its weak interaction with phospholipids. Adsorption of the polyzwitterion–drug conjugates to tumour endothelial cells and then to cancer cells favoured their transcytosis-mediated extravasation into tumour interstitium and infiltration into tumours, and led to the eradication of large tumours and patient-derived tumour xenografts in mice. The simplicity and potency of the polyzwitterion–drug conjugates should facilitate the design of translational anticancer nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OPDEA-based conjugate or block copolymer with the anticancer drug SN38 and the drug delivery process.
Fig. 2: In vitro cellular internalization of OPDEA.
Fig. 3: In vivo blood clearance of OPDEA-SN38 and OPDEA-PSN38.
Fig. 4: In vitro tumour penetration and in vivo tumour extravasation of OPDEA.
Fig. 5: In vivo tumour penetration of OPDEA.
Fig. 6: In vitro and in vivo anticancer activity of OPDEA conjugate and micelles.
Fig. 7: Mechanistic studies of RBC binding- and active transcytosis-based trans-endothelial transportation of OPDEA.
Fig. 8: The effects of inhibitors of endo- and exocytosis on the penetration of RhoBOPDEA in HepG2 or HT29 spheroids.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw and analysed datasets generated during the study are too large to be publicly shared, but are available for research purposes from the corresponding author on reasonable request.

References

  1. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Rolfo, C. & Giovannetti, E. A synthetic lethal bullet. Nat. Nanotechnol. 13, 6–7 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miele, E. et al. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 4, 99–105 (2009).

    CAS  Google Scholar 

  5. Kalra, A. V. et al. Preclinical activity of nanoliposomal irinotecan is governed by tumor deposition and intratumor prodrug conversion. Cancer Res. 74, 7003–7013 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Kirpotin, D. B. et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66, 6732–6740 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yoo, J.-W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, Q. et al. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy. Biomaterials 240, 119902 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Q., Zhou, Z., Qiu, N. & Shen, Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29, 1606628 (2017).

    Article  CAS  Google Scholar 

  11. Kim, S. M., Faix, P. H. & Schnitzer, J. E. Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 267, 15–30 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nance, E. A. et al. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lowe, S., O’Brien-Simpson, N. M. & Connal, L. A. Antibiofouling polymer interfaces: poly (ethylene glycol) and other promising candidates. Polym. Chem. 6, 198–212 (2015).

    Article  CAS  Google Scholar 

  15. Xu, X. et al. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci. Adv. 5, eaat2953 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cao, Z. & Jiang, S. Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today 7, 404–413 (2012).

    Article  CAS  Google Scholar 

  17. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8, 61–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Van der Meel, R. et al. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv. Drug Deliv. Rev. 65, 1284–1298 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Mailander, V. & Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules 10, 2379–2400 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  CAS  Google Scholar 

  23. Hubbell, J. A. & Chilkoti, A. Nanomaterials for drug delivery. Science 337, 303–305 (2012).

    Article  PubMed  Google Scholar 

  24. Von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    Article  CAS  Google Scholar 

  25. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Kakkar, A. et al. Evolution of macromolecular complexity in drug delivery systems. Nat. Rev. Chem. 1, 0063 (2017).

    Article  CAS  Google Scholar 

  27. Van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol. 14, 1007–1017 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ioannidis, J. P., Kim, B. Y. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Z. et al. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, Q. et al. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, R., Li, Y., Zhang, Z. & Zhang, X. Drug carriers based on highly protein-resistant materials for prolonged in vivo circulation time. Regen. Biomater. 2, 125–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Dobrovolskaia, M. A., Aggarwal, P., Hall, J. B. & McNeil, S. E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm. 5, 487–495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu, X. et al. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 11, 468–476 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, J. et al. Assemblies of peptide–cytotoxin conjugates for tumor‐homing chemotherapy. Adv. Funct. Mater. 29, 1807446 (2019).

    Article  CAS  Google Scholar 

  38. Golombek, S. K. et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 130, 17–38 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. et al. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 9, 7195–7206 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, J. et al. Tumor redox heterogeneity‐responsive prodrug nanocapsules for cancer chemotherapy. Adv. Mater. 25, 3670–3676 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, S. & Cao, Z. Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv. Mater. 22, 920–932 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, H. et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J. Am. Chem. Soc. 136, 157–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Evans, B. C. et al. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. 73, e50166 (2013).

    Google Scholar 

  44. Nakase, I. et al. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 46, 492–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer 8, 425–437 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trédan, O., Garbens, A. B., Lalani, A. S. & Tannock, I. F. The hypoxia-activated ProDrug AQ4N penetrates deeply in tumor tissues and complements the limited distribution of mitoxantrone. Cancer Res. 69, 940–947 (2009).

    Article  PubMed  CAS  Google Scholar 

  47. Li, X.-F. et al. Visualization of hypoxia in microscopic tumors by immunofluorescent microscopy. Cancer Res. 67, 7646–7653 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Mallidi, S. et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5, 289–301 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bao, B. et al. In vivo imaging and quantification of carbonic anhydrase IX expression as an endogenous biomarker of tumor hypoxia. PLoS ONE 7, e50860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kerbel, R. S. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived—but they can be improved. Cancer Biol. Ther. 2, 133–138 (2003).

    Article  Google Scholar 

  51. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, B. et al. Trimethylamine N-oxide–derived zwitterionic polymers: a new class of ultralow fouling bioinspired materials. Sci. Adv. 5, eaaw9562 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Jursic, B. S. Density functional theory and ab initio study of bond dissociation energy for peroxonitrous acid and peroxyacetyl nitrate. J. Molecular Struct. THEOCHEM 370, 65–69 (1996).

    Article  CAS  Google Scholar 

  55. Castro-Alvarez, A., Carneros, H., Sánchez, D. & Vilarrasa, J. Importance of the electron correlation and dispersion corrections in calculations involving enamines, hemiaminals, and aminals. Comparison of B3LYP, M06-2X, MP2, and CCSD results with experimental data. J. Org. Chem. 80, 11977–11985 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Iwasaki, Y. et al. Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers. Biomacromolecules 8, 2788–2794 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Ribeiro, M. et al. Translocating the blood–brain barrier using electrostatics. Front. Cell. Neurosci. 6, 44 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Salloum, D. S., Olenych, S. G., Keller, T. C. & Schlenoff, J. B. Vascular smooth muscle cells on polyelectrolyte multilayers: hydrophobicity-directed adhesion and growth. Biomacromolecules 6, 161–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Shih, Y.-J. & Chang, Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir 26, 17286–17294 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Ko, D. Y. et al. Phosphorylcholine-based zwitterionic biocompatible thermogel. Biomacromolecules 16, 3853–3862 (2015).

    Article  CAS  Google Scholar 

  61. Barshtein, G. et al. Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells. Cell Biochem. Biophys. 74, 19–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 100, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Allan, V. J., Thompson, H. M. & McNiven, M. A. Motoring around the Golgi. Nat. Cell Biol. 4, E236–E242 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klarhöfer, M. et al. High‐resolution blood flow velocity measurements in the human finger. Magn. Reson. Med. 45, 716–719 (2001).

    Article  PubMed  Google Scholar 

  67. Nagy, J., Chang, S., Dvorak, A. & Dvorak, H. Why are tumour blood vessels abnormal and why is it important to know? Br. J. Cancer 100, 865–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yanes, R. E. et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. Small 9, 697–704 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Nakase, I. et al. Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement. Mol. Ther. 10, 1011–1022 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Wadia, J. S., Stan, R. V. & Dowdy, S. F. Transducible TAT–HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10, 310–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Trédan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Timmins, N. E. & Nielsen, L. K. in Tissue Engineering (eds Hauser, H. & Fussenegger, M. M.) 141–151 (Humana Press, 2007).

  74. Sun, X. et al. The blood clearance kinetics and pathway of polymeric micelles in cancer drug delivery. ACS Nano 12, 6179–6192 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Sahoo, K. et al. Nanoparticle attachment to erythrocyte via the glycophorin a targeted ERY1 ligand enhances binding without impacting cellular function. Pharm. Res. 33, 1191–1203 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Song, F. et al. Detection of oligonucleotide hybridization at femtomolar level and sequence‐specific gene analysis of the Arabidopsis thaliana leaf extract with an ultrasensitive surface plasmon resonance spectrometer. Nucleic Acids Res. 30, e72 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Dupuy, A. D. & Engelman, D. M. Protein area occupancy at the center of the red blood cell membrane. Proc. Natl Acad. Sci. USA 105, 2848–2852 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ju, C. et al. Sequential intra‐intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 126, 6367–6372 (2014).

    Article  Google Scholar 

  79. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received support from the National Natural Science Foundation (51833008) of China and Zhejiang Key Research Program (2020C01123). We thank H. Cui of Johns Hopkins University for his generous instructions and help, and H. Xu for the design of the scheme in Fig. 1. We acknowledge support from the Bio-ultrastructure Analysis Laboratory of the Analysis Center of Agrobiology and Environmental Science of Zhejiang University in sample preparation and transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. conceived and supervised the project. S.C., Y.Z., W.F., Q.Z. and Y.P. performed the biological experiments and analysed the data; J.X., Jinqiang Wang, Y.G. and Z. Zhang performed the synthesis; G.W. did the transmission electron microscopy imaging and H&E staining; R.S. did the ITC assay; J.L. performed calculations; Jianguo Wang, J.Z. and X.X. established the PDX models; D.Y. and X.Y. performed the SPR experiment; H.C. and Z.L. helped with discussion of the synthesis and mechanism; H.J., J.T. and Z. Zhou helped with supervision of experiments and writing. All authors discussed the results and participated in writing the manuscript.

Corresponding author

Correspondence to Youqing Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Daryl Drummond and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, figures, tables references and video captions.

Reporting Summary

Peer Review File

Supplementary Video 1

Cellular internalization of Cy5.5OPDEA by HepG2 cells in vitro.

Supplementary Video 2

Cellular internalization of Cy5.5PEG by HepG2 cells in vitro.

Supplementary Video 3

Real-time in vivo imaging of Cy5.5OPDEA extravasating from tumour blood vessels into tumour tissue.

Supplementary Video 4

Real-time in vivo imaging of Cy5.5PEG extravasating from tumour blood vessels into tumour tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Zhong, Y., Fan, W. et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity. Nat Biomed Eng 5, 1019–1037 (2021). https://doi.org/10.1038/s41551-021-00701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00701-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer