Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice


Approximately 15–40% of all cancers develop metastases in the central nervous system (CNS), yet few therapeutic options exist to treat them. Cancer therapies based on monoclonal antibodies are widely successful, yet have limited efficacy against CNS metastases, owing to the low levels of the drug reaching the tumour site. Here, we show that the encapsulation of rituximab within a crosslinked zwitterionic polymer layer leads to the sustained release of rituximab as the crosslinkers are gradually hydrolysed, enhancing the CNS levels of the antibody by approximately tenfold with respect to the administration of naked rituximab. When the nanocapsules were functionalized with CXCL13—the ligand for the chemokine receptor CXCR5, which is frequently found on B-cell lymphoma—a single dose led to improved control of CXCR5-expressing metastases in a murine xenograft model of non-Hodgkin lymphoma, and eliminated lymphoma in a xenografted humanized bone marrow–liver–thymus mouse model. Encapsulation and molecular targeting of therapeutic antibodies could become an option for the treatment of cancers with CNS metastases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Timed-release nanocapsules facilitate brain delivery of RTX in mice.
Fig. 2: Nanocapsulation enhances the anti-lymphoma activity of RTX against CNS lymphomas in the 2F7-BR44 murine xenograft model.
Fig. 3: CXCL13 conjugation mediates 2F7-BR44 cell-specific nanocapsule targeting without affecting overall biodistribution.
Fig. 4: CXCL13 conjugation improves the anti-lymphoma activity of n-RTX.
Fig. 5: CXCL13 conjugation improves the anti-lymphoma activity of n-RTX at different stages of lymphoma progression.
Fig. 6: n-RTXCXCL13 exhibits superior anti-lymphoma activity against CNS lymphomas in 2F7-BR44-Luc cell xenograft humanized mice.

Data availability

The authors declare that all data supporting the results of this study are available within the paper and its Supplementary Information files. Source data collected in this study are available from the corresponding author upon request.


  1. 1.

    Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563–572 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Aragon-Ching, J. B. & Zujewski, J. A. CNS metastasis: an old problem in a new guise. Clin. Cancer Res. 13, 1644–1647 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    Tosoni, A., Ermani, M. & Brandes, A. A. The pathogenesis and treatment of brain metastases: a comprehensive review. Crit. Rev. Oncol. Hematol. 52, 199–215 (2004).

    Article  Google Scholar 

  4. 4.

    Rubenstein, J. L. et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 101, 466–468 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    Zhang, Y. & Pardridge, W. M. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. J. Neuroimmunol. 114, 168–172 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    Czyzewski, K. et al. Intrathecal therapy with rituximab in central nervous system involvement of post-transplant lymphoproliferative disorder. Leuk. Lymphoma 54, 503–506 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Lu, N. T. et al. Intrathecal trastuzumab: immunotherapy improves the prognosis of leptomeningeal metastases in HER-2+ breast cancer patient. J. Immunother. Cancer 3, 41 (2015).

    Article  Google Scholar 

  8. 8.

    Cooper, P. R. et al. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 1534, 13–21 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Rubenstein, J. L. et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood 121, 745–751 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Rubenstein, J. L. et al. Phase I study of intraventricular administration of rituximab in patients with recurrent CNS and intraocular lymphoma. J. Clin. Oncol. 25, 1350–1356 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    Bousquet, G. et al. Intrathecal trastuzumab halts progression of CNS metastases in breast cancer. J. Clin. Oncol. 34, e151–e155 (2016).

    Article  Google Scholar 

  12. 12.

    Chen, Y. & Liu, L. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64, 640–665 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Schroeder, A. et al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 12, 39–50 (2011).

    Article  Google Scholar 

  14. 14.

    Lu, C. T. et al. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomed. 9, 2241–2257 (2014).

    Article  Google Scholar 

  15. 15.

    Fu, H. & McCarty, D. M. Crossing the blood–brain-barrier with viral vectors. Curr. Opin. Virol. 21, 87–92 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Spencer, B. J. & Verma, I. M. Targeted delivery of proteins across the blood–brain barrier. Proc. Natl Acad. Sci. USA 104, 7594–7599 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    Battaglia, L. & Gallarate, M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv. 9, 497–508 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Helm, F. & Fricker, G. Liposomal conjugates for drug delivery to the central nervous system. Pharmaceutics 7, 27–42 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Mishra, B., Patel, B. B. & Tiwari, S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6, 9–24 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Papasani, M. R., Wang, G. & Hill, R. A. Gold nanoparticles: the importance of physiological principles to devise strategies for targeted drug delivery. Nanomedicine 8, 804–814 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Clark, A. J. & Davis, M. E. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc. Natl Acad. Sci. USA 112, 12486–12491 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Bharali, D. J. et al. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl Acad. Sci. USA 102, 11539–11544 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    Pardridge, W. M. Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. Drug Discov. 1, 131–139 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Rezvani, A. R. & Maloney, D. G. Rituximab resistance. Best. Pract. Res. Clin. Haematol. 24, 203–216 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Abes, R., Gelize, E., Fridman, W. H. & Teillaud, J. L. Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 116, 926–934 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Yan, M. et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nanotechnol. 5, 48–53 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Tian, H. et al. Growth-factor nanocapsules that enable tunable controlled release for bone regeneration. ACS Nano 10, 7362–7369 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Liang, S. et al. Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 9, 1022–1031 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, L. et al. Prolonging the plasma circulation of proteins by nanoencapsulation with phosphorylcholine-based polymer. Nano Res. 9, 2424–2432 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Young, G., Bowers, R., Hall, B. & Port, M. Six month clinical evaluation of a biomimetic hydrogel contact lens. CLAO J. 23, 226–236 (1997).

    CAS  PubMed  Google Scholar 

  33. 33.

    Chen, S., Li, L., Zhao, C. & Zheng, J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51, 5283–5293 (2010).

    CAS  Article  Google Scholar 

  34. 34.

    Kato, Y. et al. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 13, 89 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Ito, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57, 1–9 (1998).

    CAS  Article  Google Scholar 

  37. 37.

    Rosenberg, G. A. et al. Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res. 893, 104–112 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Widney, D. et al. Levels of murine, but not human, CXCL13 are greatly elevated in NOD-SCID mice bearing the AIDS-associated Burkitt lymphoma cell line, 2F7. PLoS ONE 8, e72414 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Legler, D. F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    CAS  Article  Google Scholar 

  40. 40.

    Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature 391, 799–803 (1998).

    CAS  Article  Google Scholar 

  41. 41.

    Charbonneau, B. et al. CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis. Cancer Immunol. Immunother. 62, 1475–1484 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Hussain, S. K. et al. Serum levels of the chemokine CXCL13, genetic variation in CXCL13 and its receptor CXCR5, and HIV-associated non-Hodgkin B-cell lymphoma risk. Cancer Epidemiol. Biomarkers Prev. 22, 295–307 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Dobner, T., Wolf, I., Emrich, T. & Lipp, M. Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt’s lymphoma. Eur. J. Immunol. 22, 2795–2799 (1992).

    CAS  Article  Google Scholar 

  44. 44.

    Smith, J. R. et al. Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma. Blood 101, 815–821 (2003).

    CAS  Article  Google Scholar 

  45. 45.

    Trentin, L. et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104, 502–508 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    Shultz, L. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Chijioke, O. et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein–Barr virus infection. Cell Rep. 5, 1489–1498 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Melkus, M. et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12, 1316–1322 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V. & Greiner, D. L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Walsh, N. C. et al. Humanized mouse models of clinical disease. Annu. Rev. Pathol. 12, 187–215 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Honeycutt, J. B. et al. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Invest. 126, 1353–1366 (2016).

    Article  Google Scholar 

  52. 52.

    Wu, D. et al. A bioinspired platform for effective delivery of protein therapeutics to the central nervous system. Adv. Mater. 31, 1807557 (2019).

    Article  Google Scholar 

  53. 53.

    Gasque, P. et al. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49, 171–186 (2000).

    CAS  Article  Google Scholar 

  54. 54.

    Salter, M. W. & Beggs, S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 158, 15–24 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Prinz, M. & Priller, J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15, 300–312 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  Article  Google Scholar 

  57. 57.

    Lin, N. U. et al. CNS metastases in breast cancer: old challenge, new frontiers. Clin. Cancer Res. 19, 6404–6418 (2013).

    CAS  Article  Google Scholar 

  58. 58.

    Zagouri, F. et al. Intrathecal administration of trastuzumab for the treatment of meningeal carcinomatosis in HER2-positive metastatic breast cancer: a systematic review and pooled analysis. Breast Cancer Res. Treat. 139, 13–22 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    Strayer, D. S. & Kohler, H. Immune response to phosphorylcholine II, natural “auto”-anti-receptor antibody in neonatal BALB/c mice. Cell Immunol. 25, 294–301 (1976).

    CAS  Article  Google Scholar 

  60. 60.

    Su, J. et al. Antibodies of IgM subclass to phosphorylcholine and oxidized LDL are protective factors for atherosclerosis in patients with hypertension. Atherosclerosis 188, 160–166 (2006).

    CAS  Article  Google Scholar 

  61. 61.

    Bertolini, F. et al. Endostatin, an antiangiogenic drug, induces tumor stabilization after chemotherapy or anti-CD20 therapy in a NOD/SCID mouse model of human high-grade non-Hodgkin lymphoma. Blood 96, 282–287 (2000).

    CAS  PubMed  Google Scholar 

  62. 62.

    Zhen, A. et al. Stem-cell based engineered immunity against HIV infection in the humanized mouse model. J. Vis. Exp. 113, e54048 (2016).

    Google Scholar 

  63. 63.

    Zhen, A. et al. HIV-specific immunity derived from chimeric antigen receptor-engineered stem cells. Mol. Ther. 23, 1358–1367 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Ringpis, G. et al. Engineering HIV-1-resistant T-cells from short-hairpin RNA-expressing hematopoietic stem/progenitor cells in humanized BLT mice. PLoS ONE 7, e53492 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by the UCLA AIDS Institute HIV Extinction Project funded by the McCarthy Family Foundation (to M.K.), NIH grants RO1 CA232015 and RO1 AI110200 (to M.K.), U19AI117941 (to I.S.Y.C.) and R21 AI114433 (to I.S.Y.C.), and the California HIV/AIDS Research Grants Program (ID15-LA-050 to D.Widney). Equipment located at the UCLA AIDS Institute is supported by the James B. Pendleton Charitable Trust. Cell sorting was performed in the CFAR Flow Cytometry Core Facility supported by NIH grants P30 CA016042 and 5P30 AI028697.

Author information




J.W. and M.K. contributed to the study design, performed the experiments, analysed the data and wrote the paper. D.Wu, M.Q., C.L., L.W., D.X., H.V.V., Y.Liu, E.K., X.G, G.S., Y.Lee and X.S. performed the experiments. D.Widney, O.M.-M. and Y.Lu. interpreted the data. I.S.Y.C. wrote the paper and interpreted the data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yunfeng Lu or Irvin S. Y. Chen or Masakazu Kamata.

Ethics declarations

Competing interests

I.S.Y.C. has a financial interest in CSL Behring. The remaining authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, figures and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Wu, D., Qin, M. et al. Sustained delivery and molecular targeting of a therapeutic monoclonal antibody to metastases in the central nervous system of mice. Nat Biomed Eng 3, 706–716 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing