Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Definitive upper bound on the negligible contribution of quasars to cosmic reionization

Abstract

Cosmic (hydrogen) reionization marks one of the major phase transitions of the universe at redshift z ≥ 6. During this epoch, hydrogen atoms in the intergalactic medium were ionized by Lyman continuum (LyC) photons. However, it remains challenging to identify the major sources of the LyC photons responsible for reionization. In particular, individual contributions of quasars (or active galactic nuclei) and galaxies are still under debate. Here we construct the far-ultraviolet luminosity function for type 1 quasars at z ≥ 6 that spans 10 magnitudes (−19 ≤ MUV ≤ −29), conclusively showing that quasars made a negligible contribution to reionization. We mainly search for quasars in the low-luminosity range of MUV > −23 mag that is critical for determination of the total LyC photon production of quasars but has been barely explored previously. We find that the quasar population can only provide less than 7% (95% confidence level) of the total photons needed to keep the universe ionized at z = 6.0–6.6. Our result suggests that galaxies, presumably low-luminosity star-forming systems, are the major sources of hydrogen reionization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colour selection of high-redshift quasars.
Fig. 2: Morphological selection of high-redshift quasars.
Fig. 3: QLF and quasar contribution to reionization.

Similar content being viewed by others

Data availability

All imaging data used in this paper are publicly available and the details are presented in Table 1 and Methods. Source data are provided with this paper.

Code availability

Data were reduced using publicly available data reduction pipelines.

References

  1. Miralda-Escudé, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous Universe. Astrophys. J. 530, 1–16 (2000).

    Article  ADS  Google Scholar 

  2. Robertson, B. E., Ellis, R. S., Dunlop, J. S., McLure, R. J. & Stark, D. P. Early star-forming galaxies and the reionization of the Universe. Nature 468, 49–55 (2010).

    Article  ADS  Google Scholar 

  3. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Volonteri, M. & Gnedin, N. Y. Relative role of stars and quasars in cosmic reionization. Astrophys. J. 703, 2113–2117 (2009).

    Article  ADS  Google Scholar 

  5. Onoue, M. et al. Minor contribution of quasars to ionizing photon budget at z 6: update on quasar luminosity function at the faint end with Subaru/Suprime-Cam. Astrophys. J. Lett. 847, 15–20 (2017).

    Article  ADS  Google Scholar 

  6. Boutsia, K. et al. A high space density of L* active galactic nuclei at z 4 in the COSMOS field. Astrophys. J. 869, 20–26 (2018).

    Article  ADS  Google Scholar 

  7. Giallongo, E. et al. Space densities and emissivities of active galactic nuclei at z > 4. Astrophys. J. 884, 19–52 (2019).

    Article  ADS  Google Scholar 

  8. Kulkarni, G., Worseck, G. & Hennawi, J. F. Evolution of the AGN UV luminosity function from redshift 7.5. Mon. Not. R. Astron. Soc. 488, 1035–1065 (2019).

    Article  ADS  Google Scholar 

  9. Finkelstein, S. L. et al. Conditions for Reionizing the Universe with a low galaxy ionizing photon escape fraction. Astrophys. J. 879, 36–69 (2019).

    Article  ADS  Google Scholar 

  10. Grazian, A. et al. Lyman continuum escape fraction of faint galaxies at z~3.3 in the CANDELS/GOODS-North, EGS, and COSMOS fields with LBC. Astron. Astrophys. 602, 18 (2017).

    Article  Google Scholar 

  11. Saxena, A. et al. No strong dependence of Lyman continuum leakage on physical properties of star-forming galaxies at 3.1 z 3.5. Mon. Not. R. Astron. Soc. 511, 120–138 (2022).

    Article  ADS  Google Scholar 

  12. Aaron Yung, L. Y. et al. Semi-analytic forecasts for JWST – IV. Implications for cosmic reionization and LyC escape fraction. Mon. Not. R. Astron. Soc. 496, 4574–4592 (2020).

    Article  ADS  Google Scholar 

  13. Joakim, R. et al. The SPHINX cosmological simulations of the first billion years: the impact of binary stars on reionization. Mon. Not. R. Astron. Soc. 479, 994–1016 (2018).

    Google Scholar 

  14. Willott, C. J. et al. The Canada–France high-z quasar survey: nine new quasars and the luminosity function at redshift 6. Astron. J. 139, 906–918 (2010).

    Article  ADS  Google Scholar 

  15. Jiang, L. et al. The final SDSS high-redshift quasar sample of 52 quasars at z > 5.7. Astrophys. J. 833, 222–238 (2016).

    Article  ADS  Google Scholar 

  16. Matsuoka, Y. et al. Subaru high-z exploration of low-luminosity quasars (SHELLQs). V. quasar luminosity function and contribution to cosmic reionization at z = 6. Astrophys. J. 869, 150–164 (2018).

    Article  ADS  Google Scholar 

  17. Bañados, E. et al. The PAN-STARRS1 distant z > 5.6 quasar survey: more than 100 quasars within the first Gyr of the Universe. Astrophys. J. Suppl. 227, 11–37 (2016).

    Article  ADS  Google Scholar 

  18. Kim, Y. et al. Discovery of a faint quasar at z 6 and implications for cosmic reionization. Astrophys. J. Lett. 813, 35–39 (2015).

    Article  ADS  Google Scholar 

  19. Parsa, S., Dunlop, J. S. & McLure, R. J. No evidence for a significant AGN contribution to cosmic hydrogen reionization. Mon. Not. R. Astron. Soc. 474, 2904–2923 (2018).

    Article  ADS  Google Scholar 

  20. Trebitsch, M. et al. The Obelisk simulation: Galaxies contribute more than AGN to HI reionization of protoclusters. Astron. Astrophys. 653, 154 (2021).

    Article  Google Scholar 

  21. Grazian, A. et al. The space density of ultra-luminous QSOs at the end of reionization epoch by the QUBRICS Survey and the AGN contribution to the hydrogen ionizing background. Astrophys. J. 924, 62–72 (2022).

    Article  ADS  Google Scholar 

  22. Giavalisco, M. et al. The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging. Astrophys. J. Lett. 600, 93–98 (2004).

    Article  ADS  Google Scholar 

  23. Scoville, N. et al. The Cosmic Evolution Survey (COSMOS): Overview. Astrophys. J. Suppl. 172, 1–8 (2007).

    Article  ADS  Google Scholar 

  24. Aihara, H. et al. Third data release of the Hyper Suprime-Cam Subaru strategic program. Publ. Astron. Soc. Japan 74, 247–272 (2022).

    Article  ADS  Google Scholar 

  25. McCracken, H. J. et al. UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. Astron. Astrophys. 544, 156 (2012).

    Article  Google Scholar 

  26. Koekemoer, A. M. et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey – The Hubble Space Telescope observations, imaging data products, and mosaic. Astrophys. J. Suppl. 197, 36–71 (2011).

    Article  ADS  Google Scholar 

  27. Davis, M. et al. The All-Wavelength Extended Groth Strip International Survey (AEGIS) data sets. Astrophys. J. Lett. 660, 1–6 (2007).

    Article  ADS  Google Scholar 

  28. Lawrence, A. et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. R. Astron. Soc. 379, 1599–1617 (2007).

    Article  ADS  Google Scholar 

  29. Hans-Walter, R. et al. GEMS: galaxy evolution from morphologies and SEDs. Astrophys. J. Suppl. 152, 163–173 (2004).

    Article  ADS  Google Scholar 

  30. Jarvis, M. J. et al. The VISTA Deep Extragalactic Observations (VIDEO) survey. Mon. Not. R. Astron. Soc. 428, 1281–1295 (2013).

    Article  ADS  Google Scholar 

  31. Shen, Y. et al. Gemini GNIRS Near-infrared Spectroscopy of 50 Quasars at z 5.7. Astrophys. J. 873, 35–51 (2019).

    Article  ADS  Google Scholar 

  32. Burrows, A., Sudarsky, D. & Lunine, J. I. Beyond the T Dwarfs: theoretical spectra, colors, and detectability of the coolest brown dwarfs. Astrophys. J. 596, 587–596 (2003).

    Article  ADS  Google Scholar 

  33. Vanzella, E. et al. Spectroscopic observations of Lyman Break Galaxies at redshifts ~4, 5, and 6 in the Goods-South field. Astrophys. J. 695, 1163–1182 (2009).

    Article  ADS  Google Scholar 

  34. Stark, D., Ellis, R. S. & Ouchi, M. Keck spectroscopy of faint 3 > z > 7 Lyman break galaxies: a high fraction of line emitters at redshift six. Astrophys. J. Lett. 728, 2–6 (2011).

    Article  ADS  Google Scholar 

  35. Pentericci, L. et al. CANDELSz7: a large spectroscopic survey of CANDELS galaxies in the reionization epoch. Astron. Astrophys. 619, 147 (2018).

    Article  Google Scholar 

  36. Luo, B. et al. The Chandra Deep Field-South survey: 7 Ms source catalogs. Astrophys. J. Suppl. 228, 2–31 (2017).

    Article  ADS  Google Scholar 

  37. Marshall, M. A. et al. The host galaxies of z = 7 quasars: predictions from the BLUETIDES simulation. Mon. Not. R. Astron. Soc. 499, 3819–3836 (2020).

    Article  ADS  Google Scholar 

  38. Lupi, A. et al. High-redshift quasars and their host galaxies - II. Multiphase gas and stellar kinematics. Mon. Not. R. Astron. Soc. 510, 5760–5779 (2022).

    Article  ADS  Google Scholar 

  39. Mechtley, M. et al. Near-infrared imaging of a z = 6.42 quasar host galaxy with the Hubble Space Telescope Wide Field Camera 3. Astrophys. J. Lett. 756, 38–43 (2012).

    Article  ADS  Google Scholar 

  40. Jiang, L. et al. A Magellan M2FS spectroscopic survey of galaxies at 5.5 < z < 6.8: program overview and a sample of the brightest Lyα emitters. Astrophys. J. 846, 134–148 (2017).

    Article  ADS  Google Scholar 

  41. Jiang, L. et al. Keck spectroscopy of Lyman-break galaxies and its implications for the UV-continuum and Lyα luminosity functions at z > 6. Astrophys. J. 743, 65–74 (2011).

    Article  ADS  Google Scholar 

  42. Gehrels, N. Confidence limits for small numbers of events in astrophysical data. Astrophys. J. 303, 336–346 (1986).

    Article  ADS  Google Scholar 

  43. Ren, K. & Trenti, M. A physical model for the quasar luminosity function evolution between cosmic dawn and high noon. Astrophys. J. 923, 110–118 (2021).

    Article  ADS  Google Scholar 

  44. Shen, X. et al. The bolometric quasar luminosity function at z = 0–7. Mon. Not. R. Astron. Soc. 495, 3252–3275 (2020).

    Article  ADS  Google Scholar 

  45. Cristiani, S. et al. The spectral slope and escape fraction of bright quasars at z 3.8: the contribution to the cosmic UV background. Mon. Not. R. Astron. Soc. 462, 2478–2485 (2016).

    Article  ADS  Google Scholar 

  46. Lusso, E. et al. The first ultraviolet quasar-stacked spectrum at z 2.4 fromWFC3. Mon. Not. R. Astron. Soc. 449, 4204–4220 (2015).

    Article  ADS  Google Scholar 

  47. Madau, P., Haardt, F. & Rees, M. J. Radiative transfer in a clumpy universe. III. the nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999).

    Article  ADS  Google Scholar 

  48. Finlator, K., Oh, S. P., Özel, F. & Davé, R. Gas clumping in self-consistent reionization models. Mon. Not. R. Astron. Soc. 427, 2464–2479 (2012).

    Article  ADS  Google Scholar 

  49. Iwata, I. et al. Ionizing radiation from AGNs at z > 3.3 with the Subaru Hyper Suprime-Cam Survey and the CFHT Large Area U-band Deep Survey (CL AUDS). Mon. Not. R. Astron. Soc. 509, 1820–1836 (2022).

    Article  ADS  Google Scholar 

  50. Zeltyn, G. & Trakhtenbrot, B. The contribution of AGN accretion disks to hydrogen reionization. Astrophys. J. 929, 21 (2022).

    Article  ADS  Google Scholar 

  51. Zhan, H. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the Survey Space Telescope of China Manned Space Program. Chin. Sci. Bull. 66, 1290–1298 (2021).

    Article  Google Scholar 

  52. Becker, G. D. et al. The mean free path of ionizing photons at 5 < z < 6: evidence for rapid evolution near reionization. Mon. Not. R. Astron. Soc. 508, 1853–1869 (2021).

    Article  ADS  Google Scholar 

  53. Davies, F. B. et al. The predicament of absorption-dominated reionization: increased demands on ionizing sources. Astrophys. J. Lett. 918, 35–41 (2021).

    Article  ADS  Google Scholar 

  54. Willott, C. J. et al. Four quasars above redshift 6 discovered by the Canada-France High-z Quasar survey. Astron. J. 134, 2435–2450 (2007).

    Article  ADS  Google Scholar 

  55. Willott, C. J. et al. Six more quasars at redshift 6 discovered by the Canada-France High-z Quasar survey. Astron. J. 137, 3541–3547 (2009).

    Article  ADS  Google Scholar 

  56. Jiang, L. et al. Physical properties of spectroscopically confirmed galaxies at z ≥ 6. II. morphology of the rest-frame UV continuum and Lyα emission. Astrophys. J. 773, 153–166 (2013).

    Article  ADS  Google Scholar 

  57. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys Suppl. 117, 393–404 (1996).

    Article  ADS  Google Scholar 

  58. Ning, Y. et al. The Magellan M2FS spectroscopic survey of high-redshift galaxies: a sample of 260 Lyα emitters at redshift z ≈ 5.7. Astrophys. J. 903, 4–16 (2020).

    Article  ADS  Google Scholar 

  59. Ning, Y., Jiang, L., Zheng, Z.-Y. & Wu, J. The Magellan M2FS spectroscopic survey of high-redshift galaxies: Ly𝛼 emitters and luminosity function at redshift 6.6. Astrophys. J. 926, 230–243 (2020).

    Article  ADS  Google Scholar 

  60. Moster, B. P., Somerville, R. S., Newman, J. A. & Rix, H.-W. A cosmic variance cookbook. Astrophys. J. 731, 113–120 (2011).

    Article  ADS  Google Scholar 

  61. Bhowmick, A. K. et al. Cosmic variance of z > 7 galaxies: prediction from BLUETIDES. Mon. Not. R. Astron. Soc. 496, 754–766 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

L.J., Y.N., L.H., J.W. and X.W. acknowledge support from the National Science Foundation of China (grant nos. 11721303, 11890693 and 12022303) and the China Manned Space Project (grant nos. CMS-CSST-2021-A04, CMS-CSST-2021-A05 and CMS-CSST-2021-A06). This Article used observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

Author information

Authors and Affiliations

Authors

Contributions

L.J. designed the program, analyzed the data, and prepared the manuscript. Y.N. and J.W. performed the image simulations. X.F. and L.H. helped to prepare the manuscript. B.L. and Z.Z. helped with the calculation of the QLF. F.W., X.W and J.Y. helped with the quasar selection. All authors helped with the scientific interpretations and commented on the manuscript.

Corresponding author

Correspondence to Linhua Jiang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Peer review

Peer review information

Nature Astronomy thanks James Dunlop and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Extra data used for the quasar searches

Extended Data Fig. 1 The zJ versus iz color-color diagram of high-redshift quasars for different filter sets.

The red, green, and blue circles show the median tracks of the quasar colors calculated for the GOODS, COSMOS, and EGS fields, respectively. The starting redshift is 5.8 and the step size is 0.1. The ending redshifts are different for different fields. The filled circles represent the redshift ranges that we used for target selection.

Source data

Extended Data Fig. 2 Color selection completeness maps.

The contours are selection probabilities from 0.8 to 0.2 with an interval of 0.2 for four fields.

Source data

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Ning, Y., Fan, X. et al. Definitive upper bound on the negligible contribution of quasars to cosmic reionization. Nat Astron 6, 850–856 (2022). https://doi.org/10.1038/s41550-022-01708-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01708-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing