Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Most of the photons that reionized the Universe came from dwarf galaxies

Abstract

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600–800 Myr after the Big Bang1,2,3, has been a matter of debate4. Some models suggest that high ionizing emissivity and escape fractions (fesc) from quasars support their role in driving cosmic reionization5,6. Others propose that the high fesc values from bright galaxies generate sufficient ionizing radiation to drive this process7. Finally, a few studies suggest that the number density of faint galaxies, when combined with a stellar-mass-dependent model of ionizing efficiency and fesc, can effectively dominate cosmic reionization8,9. However, so far, comprehensive spectroscopic studies of low-mass galaxies have not been done because of their extreme faintness. Here we report an analysis of eight ultra-faint galaxies (in a very small field) during the epoch of reionization with absolute magnitudes between MUV ≈ −17 mag and −15 mag (down to 0.005L (refs. 10,11)). We find that faint galaxies during the first thousand million years of the Universe produce ionizing photons with log[ξion (Hz erg−1)] = 25.80 ± 0.14, a factor of 4 higher than commonly assumed values12. If this field is representative of the large-scale distribution of faint galaxies, the rate of ionizing photons exceeds that needed for reionization, even for escape fractions of the order of 5%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Layout of the ultra-faint galaxies identified in A2744 cluster field.
Fig. 2: Spectroscopic observations of the faintest galaxies during the epoch of reionization.
Fig. 3: The ionizing photon production efficiency of faint galaxies during the epoch of reionization.
Fig. 4: The total ionizing emissivity of galaxies at z ~ 7.

Similar content being viewed by others

Data availability

The NIRCam and HST imaging data are available on the UNCOVER webpage at GitHub (https://jwst-uncover.github.io/). The NIRSpec spectroscopic data are publicly available through the Mikulski Archive for Space Telescopes (MAST; https://archive.stsci.edu/), under programme ID 2561. The UNCOVER lensing products are available at GitHub (https://jwst-uncover.github.io/DR1.html#LensingMaps).

Code availability

The following codes were used in this study: Astropy100,101, Bagpipes58,59, BEAGLE69, EAzY49, Matplotlib102, msaexp v.0.6.10103, NumPy104, NUTS97,105, PyMultinest67,68, pysersic95, SciPy106 and GrizLi (https://github.com/gbrammer/grizli).

References

  1. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780–782, 1–64 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  2. Mason, C. A., Naidu, R. P., Tacchella, S. & Leja, J. Model-independent constraints on the hydrogen-ionizing emissivity at z > 6. Mon. Not. R. Astron. Soc. 489, 2669–2676 (2019).

    Article  ADS  CAS  Google Scholar 

  3. Robertson, B. E. et al. Identification and properties of intense star-forming galaxies at redshifts z > 10. Nat. Astron. 7, 611–621 (2023).

  4. Robertson, B. E. Galaxy formation and reionization: key unknowns and expected breakthroughs by the James Webb Space Telescope. Annu. Rev. Astron. Astrophys. 60, 121–158 (2022).

    Article  ADS  Google Scholar 

  5. Madau, P. & Haardt, F. Cosmic reionization after Planck: could quasars do it all? Astrophys. J. Lett. 813, L8 (2015).

    Article  ADS  Google Scholar 

  6. Mitra, S., Choudhury, T. R. & Ferrara, A. Cosmic reionization after Planck II: contribution from quasars. Mon. Not. R. Astron. Soc. 473, 1416–1425 (2018).

    Article  ADS  CAS  Google Scholar 

  7. Naidu, R. P. et al. Rapid reionization by the oligarchs: the case for massive, UV-bright, star-forming galaxies with high escape fractions. Astrophys. J. 892, 109 (2020).

    Article  ADS  Google Scholar 

  8. Finkelstein, S. L. et al. Conditions for reionizing the Universe with a low galaxy ionizing photon escape fraction. Astrophys. J. 879, 36 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Dayal, P. et al. Reionization with galaxies and active galactic nuclei. Mon. Not. R. Astron. Soc. 495, 3065–3078 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Finkelstein, S. L. et al. The evolution of the galaxy rest-frame ultraviolet luminosity function over the first two billion years. Astrophys. J. 810, 71 (2015).

    Article  ADS  Google Scholar 

  11. Bouwens, R. J. et al. UV luminosity functions at redshifts z 4 to z 10: 10,000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015).

    Article  ADS  Google Scholar 

  12. Robertson, B. E., Ellis, R. S., Furlanetto, S. R. & Dunlop, J. S. Cosmic reionization and early star-forming galaxies: a joint analysis of new constraints from Planck and the Hubble Space Telescope. Astrophys. J. Lett. 802, L19 (2015).

    Article  ADS  Google Scholar 

  13. Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec Multi-Object spectroscopy. Preprint at https://doi.org/10.48550/arXiv.2306.02467 (2023).

  14. Roberts-Borsani, G. et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST. Nature 618, 480–483 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Mascia, S. et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program. Astron. Astrophys. 672, A155 (2023).

    Article  CAS  Google Scholar 

  16. Ishigaki, M. et al. Full-data results of Hubble Frontier Fields: UV luminosity functions at z 6–10 and a consistent picture of cosmic reionization. Astrophys. J. 854, 73 (2018).

    Article  ADS  Google Scholar 

  17. Atek, H. et al. Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels. Astrophys. J. 814, 69 (2015).

    Article  ADS  Google Scholar 

  18. Bouwens, R. J., Oesch, P. A., Illingworth, G. D., Ellis, R. S. & Stefanon, M. The z 6 luminosity function fainter than −15 mag from the Hubble Frontier Fields: the impact of magnification uncertainties. Astrophys. J. 843, 129 (2017).

    Article  ADS  Google Scholar 

  19. Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at https://doi.org/10.48550/arXiv.2306.05448 (2023).

  20. Fujimoto, S. et al. CEERS spectroscopic confirmation of NIRCam-selected z 8 galaxy candidates with JWST/NIRSpec: initial characterization of their properties. Astrophys. J. Lett. 949, L25 (2023).

    Article  ADS  Google Scholar 

  21. Simmonds, C. et al. The ionizing photon production efficiency at z 6 for Lyman-alpha emitters using JEMS and MUSE. Mon. Not. R. Astron. Soc. 523, 5468–5486 (2023).

    Article  ADS  Google Scholar 

  22. Stanway, E. R. & Eldridge, J. J. Re-evaluating old stellar populations. Mon. Not. R. Astron. Soc. 479, 75–93 (2018).

    Article  ADS  CAS  Google Scholar 

  23. Pahl, A. J., Shapley, A., Steidel, C. C., Chen, Y. & Reddy, N. A. An uncontaminated measurement of the escaping Lyman continuum at z 3. Mon. Not. R. Astron. Soc. 505, 2447–2467 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).

    Article  ADS  CAS  Google Scholar 

  25. Gnedin, N. Y. & Madau, P. Modeling cosmic reionization. Living Rev. Comput. Astrophys. 8, 3 (2022).

    Article  ADS  Google Scholar 

  26. Chisholm, J. et al. The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift. Mon. Not. R. Astron. Soc. 517, 5104–5120 (2022).

    Article  ADS  CAS  Google Scholar 

  27. Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ≈ 10−12 revealed by JWST. Astrophys. J. Lett. 940, L14 (2022).

  28. Naidu, R. P. et al. The HDUV Survey: six Lyman continuum emitter candidates at z ~ 2 revealed by HST UV Imaging. Astrophys. J. 847, 12 (2017).

    Article  ADS  Google Scholar 

  29. Vanzella, E. et al. Direct Lyman continuum and Ly α escape observed at redshift 4. Mon. Not. R. Astron. Soc. 476, L15–L19 (2018).

    Article  ADS  CAS  Google Scholar 

  30. Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J. & Slyz, A. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470, 224–239 (2017).

    Article  ADS  CAS  Google Scholar 

  31. Ma, X. et al. No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations. Mon. Not. R. Astron. Soc. 498, 2001–2017 (2020).

    Article  ADS  CAS  Google Scholar 

  32. Yeh, J. Y.-C. et al. The thesan project: ionizing escape fractions of reionization-era galaxies. Mon. Not. R. Astron. Soc. 520, 2757–2780 (2023).

    Article  ADS  CAS  Google Scholar 

  33. Hutter, A., Dayal, P., Legrand, L., Gottlöber, S. & Yepes, G. Astraeus – III. The environment and physical properties of reionization sources. Mon. Not. R. Astron. Soc. 506, 215–228 (2021).

    Article  ADS  CAS  Google Scholar 

  34. Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).

    Article  Google Scholar 

  35. Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).

    ADS  Google Scholar 

  36. Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article  ADS  CAS  Google Scholar 

  37. Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at https://doi.org/10.48550/arXiv.2212.04026 (2022).

  38. Weaver, J. R. et al. The UNCOVER Survey: a first-look HST + JWST Catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).

  39. Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pacific 135, 028001 (2023).

    Article  ADS  Google Scholar 

  40. Brammer, G. Grizli: Grism redshift and line analysis software. Astrophysics Source Code Library, record ascl:1905.001 (2019).

  41. Lotz, J. M. et al. The Frontier Fields: survey design and initial results. Astrophys. J. 837, 97 (2017).

    Article  ADS  Google Scholar 

  42. Steinhardt, C. L. et al. The BUFFALO HST Survey. Astrophys. J. Suppl. Ser. 247, 64 (2020).

    Article  ADS  Google Scholar 

  43. Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).

    Article  CAS  Google Scholar 

  44. Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).

    Article  CAS  Google Scholar 

  45. Heintz, K. E. et al. Extreme damped Lyman-α absorption in young star-forming galaxies at z = 9 − 11. Preprint at https://doi.org/10.48550/arXiv.2306.00647 (2023).

  46. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pacific 98, 609–617 (1986).

    Article  ADS  CAS  Google Scholar 

  47. Bouwens, R. J., Illingworth, G., Ellis, R. S., Oesch, P. & Stefanon, M. z 2–9 galaxies magnified by the Hubble Frontier Field clusters. II. Luminosity functions and constraints on a faint-end turnover. Astrophys. J. 940, 55 (2022).

    Article  ADS  Google Scholar 

  48. Brammer, G., Strait, V., Matharu, J. & Momcheva, I. grizli. Zenodo zenodo.org/records/6672538 (2022).

  49. Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article  ADS  Google Scholar 

  50. Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).

    Article  ADS  Google Scholar 

  51. Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).

    Article  ADS  Google Scholar 

  52. Bacon, R. et al. The MUSE second-generation VLT instrument. In Ground-based and Airborne Instrumentation for Astronomy III, Vol. 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (eds McLean, I. S. et al.) 773508 (SPIE, 2010).

  53. Mahler, G. et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images. Mon. Not. R. Astron. Soc. 473, 663–692 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Richard, J. et al. An atlas of MUSE observations towards twelve massive lensing clusters. Astron. Astrophys. 646, A83 (2021).

    Article  Google Scholar 

  55. Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).

    Article  ADS  Google Scholar 

  56. Zitrin, A. et al. Lyα emission from a luminous z = 8.68 galaxy: implications for galaxies as tracers of cosmic reionization. Astrophys. J. Lett. 810, L12 (2015).

    Article  ADS  Google Scholar 

  57. Furtak, L. J. et al. Constraining the physical properties of the first lensed z 9–16 galaxy candidates with JWST. Mon. Not. R. Astron. Soc. 519, 3064–3075 (2023).

    Article  ADS  CAS  Google Scholar 

  58. Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article  ADS  CAS  Google Scholar 

  59. Carnall, A. C. et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3. Mon. Not. R. Astron. Soc. 490, 417–439 (2019).

    Article  ADS  CAS  Google Scholar 

  60. Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

  61. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  62. Sánchez-Blázquez, P. et al. Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article  ADS  Google Scholar 

  63. Falcón-Barroso, J. et al. An updated MILES stellar library and stellar population models. Astron. Astrophys. 532, A95 (2011).

    Article  Google Scholar 

  64. Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofís. 53, 385–438 (2017).

    ADS  CAS  Google Scholar 

  65. Charlot, S. & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article  ADS  CAS  Google Scholar 

  66. Papovich, C. et al. CEERS key paper. V. Galaxies at 4 < z < 9 are bluer than they appear–characterizing galaxy stellar populations from rest-frame 1 μm imaging. Astrophys. J. Lett. 949, L18 (2023).

    Article  ADS  Google Scholar 

  67. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  68. Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Article  Google Scholar 

  69. Chevallard, J. & Charlot, S. Modelling and interpreting spectral energy distributions of galaxies with beagle. Mon. Not. R. Astron. Soc. 462, 1415–1443 (2016).

    Article  ADS  CAS  Google Scholar 

  70. Ferland, G. J. et al. The 2013 Release of Cloudy. Rev. Mex. Astron. Astrofís. 49, 137–163 (2013).

    ADS  CAS  Google Scholar 

  71. Gutkin, J., Charlot, S. & Bruzual, G. Modelling the nebular emission from primeval to present-day star-forming galaxies. Mon. Not. R. Astron. Soc. 462, 1757–1774 (2016).

    Article  ADS  CAS  Google Scholar 

  72. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacific 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  73. Pei, Y. C. Interstellar dust from the Milky Way to the magellanic clouds. Astrophys. J. 395, 130–139 (1992).

    Article  ADS  Google Scholar 

  74. Inoue, A. K., Shimizu, I., Iwata, I. & Tanaka, M. An updated analytic model for attenuation by the intergalactic medium. Mon. Not. R. Astron. Soc. 442, 1805–1820 (2014).

    Article  ADS  CAS  Google Scholar 

  75. Roberts-Borsani, G. et al. z 7 galaxies with Red Spitzer/IRAC [3.6]–[4.5] colors in the full CANDELS data set: the brightest-known galaxies at z  7–9 and a probable spectroscopic confirmation at z = 7.48. Astrophys. J. 823, 143 (2016).

    Article  ADS  Google Scholar 

  76. Trenti, M. & Stiavelli, M. Cosmic variance and its effect on the luminosity function determination in deep high-z surveys. Astrophys. J. 676, 767–780 (2008).

    Article  ADS  Google Scholar 

  77. Leitherer, C. & Heckman, T. M. Synthetic properties of starburst galaxies. Astrophys. J. Suppl. Ser. 96, 9 (1995).

    Article  ADS  Google Scholar 

  78. Osterbrock, D. E. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Univ. Science Books, 1989).

  79. Atek, H. et al. The star formation burstiness and ionizing efficiency of low-mass galaxies. Mon. Not. R. Astron. Soc. 511, 4464–4479 (2022).

    Article  ADS  CAS  Google Scholar 

  80. Bouwens, R. J. et al. The Lyman-continuum photon production efficiency ξion of z ~ 4–5 galaxies from IRAC-based Hα measurements: implications for the escape fraction and cosmic reionization. Astrophys. J. 831, 176 (2016).

    Article  ADS  Google Scholar 

  81. Matthee, J. et al. The production and escape of Lyman-continuum radiation from star-forming galaxies at z ~ 2 and their redshift evolution. Mon. Not. R. Astron. Soc. 465, 3637–3655 (2017).

    Article  ADS  CAS  Google Scholar 

  82. Nanayakkara, T. et al. Reconstructing the observed ionizing photon production efficiency at z ~ 2 using stellar population models. Astrophys. J. 889, 180 (2020).

    Article  ADS  CAS  Google Scholar 

  83. Matthee, J. et al. EIGER. II. First spectroscopic characterization of the young stars and ionized gas associated with strong Hβ and [O III] line emission in galaxies at z = 5–7 with JWST. Astrophys. J. 950, 67 (2023).

    Article  ADS  Google Scholar 

  84. Sun, F. et al. First sample of Hα+[O III]λ5007 line emitters at z > 6 through JWST/NIRCam slitless spectroscopy: physical properties and line-luminosity functions. Astrophys. J. 953, 53 (2023).

    Article  ADS  Google Scholar 

  85. Tang, M. et al. JWST/NIRSpec spectroscopy of z = 7–9 star-forming galaxies with CEERS: new insight into bright Lyα emitters in ionized bubbles. Mon. Not. R. Astron. Soc. 526, 1657–1686 (2023).

    Article  ADS  Google Scholar 

  86. Saxena, A. et al. JADES: The production and escape of ionizing photons from faint Lyman-alpha emitters in the epoch of reionization. Preprint at https://doi.org/10.48550/arXiv.2306.04536 (2023).

  87. Prieto-Lyon, G. et al. The production of ionizing photons in UV-faint z ~ 3–7 galaxies. Astron. Astrophys. 672, A186 (2023).

    Article  CAS  Google Scholar 

  88. Flury, S. R. et al. The low-redshift Lyman Continuum Survey. I. New, diverse local Lyman continuum emitters. Astrophys. J. Suppl. Ser. 260, 1 (2022).

  89. Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

    Article  ADS  Google Scholar 

  90. Nakajima, K. et al. EMPRESS. V. Metallicity diagnostics of galaxies over 12 + log(O/H) = 6.9–8.9 established by a local galaxy census: preparing for JWST spectroscopy. Astrophys. J. Suppl. Ser. 262, 3 (2022).

  91. Sanders, R. L. et al. The MOSDEF survey: the evolution of the mass-metallicity relation from z = 0 to z 3.3. Astrophys. J. 914, 19 (2021).

    Article  ADS  CAS  Google Scholar 

  92. Sanders, R. L., Shapley, A. E., Topping, M. W., Reddy, N. A. & Brammer, G. B. Direct Te-based metallicities of z = 2–9 galaxies with JWST/NIRSpec: empirical metallicity calibrations applicable from reionization to cosmic noon. Preprint at https://doi.org/10.48550/arXiv.2303.08149 (2023).

  93. Stanway, E. R. & Eldridge, J. J. Initial mass function variations cannot explain the ionizing spectrum of low metallicity starbursts. Astron. Astrophys. 621, A105 (2019).

    Article  ADS  CAS  Google Scholar 

  94. Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoci. Argentina Astron. Plata Argentina 6, 41–43 (1963).

    ADS  Google Scholar 

  95. Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Software 8, 5703 (2023).

  96. Hoffman, M. D. & Gelman, A. et al. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2014).

    MathSciNet  Google Scholar 

  97. Phan, D., Pradhan, N. & Jankowiak, M. Composable effects for flexible and accelerated probabilistic programming in NumPyro. Preprint at https://arxiv.org/abs/1912.11554 (2019).

  98. Holwerda, B. W. et al. The sizes of candidate z ~ 9-10 galaxies: confirmation of the bright CANDELS sample and relation with luminosity and mass. Astrophys. J. 808, 6 (2015).

    Article  ADS  Google Scholar 

  99. Ferrara, A., Pallottini, A. & Dayal, P. On the stunning abundance of super-early, luminous galaxies revealed by JWST. Mon. Not. R. Astron. Soc. 522, 3986–3991 (2023).

  100. Astropy Collaboration. et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  101. Astropy Collaboration. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article  ADS  Google Scholar 

  102. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  103. Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://zenodo.org/records/8314675 (2022).

  104. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hoffman, M. D. & Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Preprint at https://doi.org/10.48550/arXiv.1111.4246 (2011).

  106. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.A. and I.C. acknowledge support from CNES, focused on the JWST mission and the Programme National Cosmology and Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES. H.A. thanks the Cosmic Dawn Center (DAWN) for their support. DAWN is funded by the Danish National Research Foundation (grant no. 140). I.L. acknowledges support from the Australian Research Council through Future Fellowship FT220100798. P.D. acknowledges support from the NWO (grant no. 016.VIDI.189.162) (ODIN) and from the CO-FUND Rosalind Franklin programme of the European Commission and the University of Groningen. A.Z. acknowledges support from the US–Israel Binational Science Foundation (BSF) (grant no. 2020750), the US National Science Foundation (NSF) (grant no. 2109066) and the Ministry of Science and Technology, Israel. The work of C.C.W. is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the NSF.

Author information

Authors and Affiliations

Authors

Contributions

H.A. led the analysis and writing of the paper. L.J.F. and A.Z. constructed the lens model and extracted lensing-related quantities. S.F. produced the figures. I.L. and R.B. are the principal investigators of the UNCOVER programme. R.B. and I.L. designed the observations and reduced the spectra. J.R.W. and B.W. produced the catalogues used for target selection. P.D. provided simulations to interpret the observational results obtained. V.K. produced line measurements. I.C. estimated survey volumes. D.J.S. ran an SED fitting analysis. T.B.M. measured the galaxy sizes. All authors contributed to the paper and aided the analysis and interpretation.

Corresponding author

Correspondence to Hakim Atek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 UNCOVER JWST data for galaxy 16155 at zspec = 6.88.

The top panels show image cutouts in seven different filters at increasing wavelength including ancillary HST/ACS data in F814W, and UNCOVER JWST imaging in F115W, F150W, F200W, F277W, F356W, and F444W bands (left to right). The central panel shows the UNCOVER NIRSpec data, with the 2D spectrum on top of the 1D optimally extracted spectrum (black with gray 1-σ uncertainty ranges). The red lines show the best-fit msaexp template spectrum. The observed-frame wavelengths of key emission lines are indicated as vertical dashed lines. The bottom panels show a zoomed in version of three different parts of the spectrum around the Lyα break (left), around the [Oiii]+Hβ emission lines (middle) and the Hα line (right).

Extended Data Fig. 2 Stellar population simultaneous fitting to the NIRSpec spectra and NIRCam photometry.

Panel a: Two representative sources (IDs 18924 and 16155) are shown. The best-fit Bagpipes model (red curve) is plotted over the observed NIRSpec spectrum (black curve), together with the error spectrum (gray curve). The NIRCam photometric measurements are represented with black points with their associated 1-sigma uncertainties. Panel b: Posterior distribution function for the main physical properties of ID 16155. When relevant, the parameters are corrected for magnification. Panel c: Same as panel b, for source ID 18924.

Extended Data Fig. 3 Spectroscopic constraints on the UV luminosity function.

The UV luminosity function as determined from our spectroscopic sample is represented by orange points. Also shown, the photometric determination from the HFF data24, together with the best-fit Schechter function (blue curve) and a modified Schechter with a potential turnover (teal curve). The shaded region of each curve represent the 1 − σ uncertainties.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atek, H., Labbé, I., Furtak, L.J. et al. Most of the photons that reionized the Universe came from dwarf galaxies. Nature 626, 975–978 (2024). https://doi.org/10.1038/s41586-024-07043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07043-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing