Abstract
Excitonic condensate has been longsought within bulk indirectgap semiconductors, quantum wells, and 2D material layers, all tried as carrying media. Here, we propose intrinsically stable 2D semiconductor heterostructures with doublyindirect overlapping bands as optimal platforms for excitonic condensation. After screening hundreds of 2D materials, we identify candidates where spontaneous excitonic condensation mediated by purely electronic interaction should occur, and heteropairs Sb_{2}Te_{2}Se/BiTeCl, Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2}, and LiAlTe_{2}/BiTeI emerge promising. Unlike monolayers, where excitonic condensation is hampered by Peierls instability, or other bilayers, where doping by applied voltage is required, rendering them essentially nonequilibrium systems, the chemicallyspecific heterostructures predicted here are latticematched, show no detrimental electronic instability, and display broken typeIII gap, thus offering optimal carrier density without any gate voltages, in trueequilibrium. Predicted materials can be used to access different parts of electronhole phase diagram, including BECBCS crossover, enabling tantalizing applications in superfluid transport, Josephsonlike tunneling, and dissipationless charge counterflow.
Introduction
Condensation to a macroscopic quantum state is a unique feature of bosonic particles that manifests in macroscopic quantum phenomena as remarkable as superfluidity and superconductivity. Experiments on these systems have affirmed our understanding of quantum theory, stimulated applications, and recent widespread interest in use for quantum computing^{1,2,3}. Apart from the extraordinary transport properties^{4,5} of the condensate, the topological excitations in a superfluid are ideal hunting ground for exotic particles^{6} such as ‘t HooftPolyakov and Dirac monopoles, or skyrmions, useful for comprehending grand unified theory^{7} but also for applications in data storage and spintronics^{8,9}. Excitons are composite bosons that are bound states of an electron and hole in a solid and were predicted to undergo condensation^{10,11} under appropriate conditions. Compared to commonly known bosonic systems such as atomic gases and liquid ^{4}He, excitons have smaller mass and their condensate should remain stable^{12} up to higher temperatures^{13}. Being created in solids by excitation with light, excitons have a short lifetime—a major obstacle to their condensation.
A fundamentally different possibility of an excitonic ground state was first discussed by Mott who noted^{14} that as valence and conduction bands of a semiconductor start overlapping (e.g., under external pressure) leading to a semimetallic state (Fig. 1a), Coulomb attraction between the conduction band (CB) electrons and valence band (VB) holes should lead to the spontaneous formation of excitons, delaying the appearance of the metallic state. The semimetal transitions to an excitonic insulator phase, with a 2Δ gap^{15,16} in the excitation spectrum, as shown in Fig. 1b. The latter, also called the BardeenCooperSchrieffer (BCS) phase, corresponds to the weak coupling limit^{11} of composite boson condensate, and holds when na_{0}^{2} >> 1, where n is carrier or pair density and a_{0} is exciton radius. At low density, na_{0}^{2} << 1, the screening from carriers is reduced (strong coupling) and the Bose–Einstein condensate (BEC) phase forms. BEC and BCS are different limits^{11} of the same boson condensate state.
After early theoretical works on bulk semimetallic crystals^{10,15,17,18}, spatial separation has been proposed^{19,20,21} as a promising way to realize excitonic instability and inverted gap quantumwell bilayer systems were considered. Having electrons and holes spaced apart is deemed essential to reduce manybody interactions that lead to thermodynamic instability near the phase transition^{22}. However, in quantum wells typically separated by dozens of Å, electronhole interaction is weak. Moreover, surface roughness/disorder in quantum wells degrades the coherence of the excitonic state.
Recent interest in excitonic condensation has been renewed by the advent of twodimensional (2D) materials, providing the advantage of reduced screening and atomically sharp interface. Bilayer graphene has been extensively investigated theoretically^{23,24,25,26} and even with some experimental evidence^{27}, however inconclusive, since the phase sought is either not observed or has very low T_{c}; bilayer graphene low effective mass (0.03–0.05 m_{e})^{28,29} results in weak exciton binding and requires intricate device design with electrostatic gating. Moreover, other 2D heterobilayers have also been theoretically predicted (ref. ^{30} and references therein) and recently experimentally demonstrated^{31} to exhibit exciton condensation. However, by necessity they require applied voltages for doping with inevitable leakage currents and energy dissipation, in other words all are fundamentally nonequilibrium systems. This is significant in preventing observation of zerobias Josephson effect^{31}, not to mention detrimental heating in any device. Recently there was a suggestion of true equilibrium excitonic condensate ground state in 1TTiSe_{2}, a layered 2D semimetal^{32,33}. However, TiSe_{2} is also known to host phonon instability^{34,35}, possibly making the excitonic phase ground state inaccessible^{36} due to lattice reconstruction. In a semimetal, a phonon with wavevector Q_{CDW} = ΓM (Fig. 1a) could render the system unstable by creating a spontaneous crystal distortion (Peierls instability) driven by the electronphonon interaction, preventing the appearance of the excitonic state^{22}. Technically, the meanfield gap equations describing the excitonic insulator and Peierls instability are mathematically identical^{32,37,38} and give the same excitation spectrum^{16} as shown in Fig. 1b, with the only difference being in the nature of coupling (Coulomb attraction for the former and electronphonon coupling for the latter), complicating the differentiation of the two phases. Thus, singlelayer 2D systems are also potentially plagued by the same problems as bulk crystals  namely, strong interband tunneling transitions and thermodynamic instability, where excitons are mixed in into the ground state of the Peierls insulator^{38}. To resolve this issue, both kspace and real space separations of the VB and CB are deemed essential for creation of the exciton condensate state.
This work identifies a realistic chemicallyspecific material system(s), 2D van der Waals (vdW) bilayer heterostructures, which are latticematched (prerequisite for exciton coherence), do not show detrimental electronic instability (like Peierls), and display broken typeIII gap, thus offering the optimal carrier density without any voltage/gating, stable, in true equilibrium. The heterobilayers have spatially separated bands and the semimetallic state arises due to difference in the workfunctions of the layers and therefore not requring any electrostatic gating. The electrons and holes are located next to each other on different layers as well as on distinct valleys, their mutual interaction driving excitonic instability and, at lower temperatures, condensation. Since the electron and holes states are spatially separated, the electronphonon interaction between the layers would be weak, thereby preventing any phonondriven Peierls instability. Such bilayer heterostructure must be composed of a pair of latticematched monolayer 2D semiconductors with either a broken gap (type III) or staggered gap (type II) alignment. For a brokengap band alignment shown in Fig. 1c, the electron is transferred to the conduction band of the acceptor layer, with a hole remaining in the valence band on the donor layer. Band overlap can also be tuned through external perturbation, as shown in Fig. 1c, starting from the staggered gap lineup.
Results
Model Hamiltonian analysis of 2D bilayer heterostructure
In order to guide and accelerate such search of suitable material pairs based on their band alignment, we first perform a model Hamiltonian analysis (see “Methods”) for estimating the optimal effective mass and carrier density. In a bilayer heterostructure with carrier density n, embedded in vacuum and separated by distance d = 3 Å, the electron and hole states are on different layers and have distinct effective masses. To estimate the binding energies (E_{b}) of individual interlayer excitons in such vdW heterostructures, we adopt the RPA form of the screened potential suitable for bilayers^{19,25}. The effective mass Hamiltonian for an electronhole pair in parabolic bands was constructed and diagonalized using the Gaussian basis set (see “Methods” for details). Figure 2a shows the calculated roomtemperature binding energies of interlayer excitons as a function of reduced mass μ, and carrier density. Although the potential is always attractive, the model predicts essentially no binding for n higher than ~10^{12} cm^{−2} as well as at carrier masses below μ ~ 0.03 m_{e}.
Favorable conditions for strong interactions and a strongly coupled regime are in the upper left corner of Fig. 2a, i.e. at carrier masses μ ~ 0.5 m_{e} and densities n ~ 10^{11} cm^{−2}. At low densities (na_{0}^{2} << 1) these individual excitons with high binding energy are known^{11,12} to condense into a BEClike phase below a critical temperature. The twodimensional analog of the threedimensional BEC phase of excitons is the BerezinskiiKosterlitzThouless (BKT)^{39} phase, which, unlike BEC, lacks long range phase coherence, but has local phase coherence and exhibits superfluidity. The temperature T_{BKT} for the BKT superfluid phase transition in a noninteracting 2D Bose liquid is obtained from the universal relation^{39,40} k_{B}T_{BKT} = πnℏ^{2}/2 M, where M is the exciton mass, and is shown in Fig. 2b for different masses. One should note from Fig. 2a that the binding energies of individual excitons are greater than k_{B}T_{BKT} at corresponding masses and densities in Fig. 2b, justifying the use of the strongly coupled BKT limit. The dashed lines in Fig. 2b denote the crossover from the BKT phase to the BCS regime where the condensation is best described by the BCS mean field theory^{41}. The BCS critical temperature is given by^{42} k_{B}T_{c} = 0.57Δ and is shown in Fig. 2b. The order parameter Δ was evaluated by solving the selfconsistent excitonic gap equation for different masses and carrier densities (details in “Methods”). Overall, Fig. 2b represents a semiquantitative phase diagram for excitonic particles and denotes optimal n to realize an excitonic condensate phase (see Supplementary Fig. 9 for all other phases). Apart from the phases shown in Fig. 2b, a gas of excitons can also transition to an electronhole liquid (EHL) state, thereby preventing the realization of an excitonic condensation (BKT/BCS). However, in our bilayer case with electrons and holes spatially separated, the excitons act as oriented electric dipoles with a repulsive interaction between them. The repulsion is important because it prevents the occurrence of EHL state and excitonic BKT/BCS can be realized^{43} at low densities. However, at high densities, the EHL state might be more stable^{44}.
Identifying optimal 2D bilayer heterostructures
The densities to realize excitonic condensation should be achievable with existing 2D materials. We search the 2D material database^{45} to identify optimal materials by first recalculating and comparing valence and conduction band positions with respect to the vacuum level. The database^{45} contains a list of 2D materials that can be exfoliated from experimentally known 3D compounds. Next, after preselecting candidate pairs, we calculate the band gaps of 23 heterostructures with broken and staggered band alignments, as shown in Fig. 3. The pairs were chosen so that their lattice mismatch Δε < 2%, and each layer has a band gap >0.3 eV. Band gaps in heterostructures range from −0.22 eV to 0.1 eV, with negative values indicating greater overlap. Assuming effective masses are same, higher band overlap corresponds to higher carrier density, and different heterostructures can be used to access distinct regions of the phase diagram. According to Fig. 2b, n ~ 10^{10}–5 × 10^{12} cm^{−2} is an optimal range of carrier density for excitonic condensation, and the corresponding optimal initial band overlaps are 1 meV < W_{0} < 391 meV, assuming μ = 0.1 m_{e}, and d = 3 Å (see “Methods” for details). The final overlap in a heterostructure W is 1 meV<W < 120 meV. We select three materials pairs Sb_{2}Te_{2}Se/BiTeCl, Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2}, and LiAlTe_{2}/BiTeI marked in Fig. 3, in which final calculated band overlaps after forming heterostructures are 67 meV, 47 meV, and 38 meV, respectively. Materials with small band gaps can show excitonic instability provided that E_{g} < E_{b} and can also in principle exhibit condensation.
We calculate the phonon spectra and band structure of Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} (see Supplementary Fig. 3 for two other heterobilayers), which is instructive to compare with the monolayer 1TTiSe_{2}, well studied^{32,33,34,35} as a possible candidate for excitonic instability. In Fig. 4a, b the band structures of individual Hf_{2}N_{2}I_{2} and Zr_{2}N_{2}Cl_{2} layers are plotted. Both materials are semiconductors, with the VBM of freestanding Hf_{2}N_{2}I_{2} at −4.57 eV and the CBM of Zr_{2}N_{2}Cl_{2} at −4.88 eV, with respect to the same vacuum level. After a bilayer is formed, the energy overlap between the VBM and CBM decreases but remains, at ~0.05 eV, as seen in Fig. 4c of the Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} band structure, which also shows that the electrondoped conduction band at the K point is located on the Zr_{2}N_{2}Cl_{2} layer, while holedoped valence band on the Hf_{2}N_{2}I_{2} layer. As there is little interlayer mixing in either the valence or conduction bands, a bilayer becomes polar. The band structure of Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} resembles in fact that of monolayer 1TTiSe_{2} (Fig. 4d), both being indirectgap semimetals with the VBM and CBM lying at different valleys in the Brillouin zone. Similar to 1TTiSe_{2}, the valence and conduction bands are mainly composed of p and d orbitals, with the VBM originating from iodine p states of Hf_{2}N_{2}I_{2} layer, and smaller contributions from nitrogen p states of Hf_{2}N_{2}I_{2}, whereas the CBM originates from zirconium d states, with smaller contributions from p states of N and Cl of Zr_{2}N_{2}Cl_{2} (see Supplementary Fig. 7). Notably, the valence and conduction bands of 1TTiSe_{2} are strongly coupled to phonons^{16,34,46}, namely, the bands of TiSe_{2} are coupled to atomic displacements at modulation vector Q = ΓM, in Fig. 4e; resulting chargedensity wave (CDW) is accompanied by lattice reconstruction. This resembles the Peierls instability which opens the band gap, debatably driving this material to a conventional insulator state^{34,35,36}. In contrast, such instability is absent in Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2}, where valence and conduction bands, located at different layers, are decoupled. The phonon spectrum of Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} in Fig. 4f attests to its stable structure; electronphonon coupling, largest at K and Γ points, is too weak to cause unstable modes. A CDW is expected due to the modulation vector Q = ΓK^{47}, however, due to weak electronphonon coupling, there will not be any lattice distortion. The spontaneous excitonic condensation in this material will be mediated by purely electronic interaction. Thus, excitonic condensation would not be hampered by the phonon instability in a Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} bilayer or, for that matter, in other vdW bilayers (this was further affirmed by additional supercell calculations, see 3.2 in Supplementary Note 3).
Discussion
Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} has a finite modulation vector Q = ΓK, however, Sb_{2}Te_{2}Se/BiTeCl, and LiAlTe_{2}/BiTeI have a zero modulation vector (see Supplementary Fig. 3). This results in band crossing between electron and hole states and also hybridization in Sb_{2}Te_{2}Se/BiTeCl, and LiAlTe_{2}/BiTeI (for details see 3.1 in Supplementary Note 3). Singleparticle level band hybridization can lead to interband tunneling processes and may fix the phase of the order parameter and destroy superfluidity^{47}. However, these tunneling processes can be suppressed by using suitable dielectrics such as hBN in between the two layers and superfluidity can be achieved.
From the band structures calculated using LDA functional, we further extract the effective masses (see Supplementary Table 1) and calculate the n in three heterobilayers, in order to estimate the critical temperatures for excitonic condensation, marked in Fig. 2b as circled 1, 2 and 3 (see 1.2 in Supplementary Note 1 for the value of n obtained with another functional). We find n to be >10^{12} cm^{−2}, with Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2} highest T_{c} of ~31 K. While the methoddependent spread of n values as estimated by different functionals would yield different estimates for T_{c}, it should not affect the conclusion about the feasibility of excitonic condensation in these heterostructures. Building upon Mott’s early ideas^{14}, external factors such as strain, and possibly gating or changing the interlayer distance (yet not to weaken binding interaction), can finetune the carrier density, to access different regions of the phase diagram, and increase the T_{c} (see Supplementary Note 2 for details). For example, a field of ~1 V/nm can change the carrier density by ~10^{12} cm^{−2}, and can quite noticeably shift T_{c} of materials in Fig. 2b diagram. Similar perturbation can even be used to tune the band overlap in the heterobilayers lying on the flanks of Fig. 3, which were rendered above as suboptimal for excitonic condensation, if those are more readily synthesizable.
In summary, our quantitative analysis demonstrates that Sb_{2}Te_{2}Se/BiTeCl, Hf_{2}N_{2}I_{2}/Zr_{2}N_{2}Cl_{2}, LiAlTe_{2}/BiTeI, Hf_{2}N_{2}I_{2}/SnS_{2} and possibly other 2D heterobilayers can serve as a platform for realizing an excitonic ground state, in true equilibrium systems (with no need of lightexcitation or even static applied voltages). The van der Waals spacing ensures that the lattice thermodynamic stability is preserved, with bands edges being decoupled from the atomic displacements, offering a better materialhost for excitonic condensation as compared to recently considered monolayer 1TTiSe_{2}, likely prone to Peierls instability, which hamper exciton condensation. Moreover, the typeIII broken gap ensures that no applied gatevoltage is required for doping, contrary to other studied heterobilayers. To map the electronhole system behaviors in a heterobilayers, we construct a phase diagram, which for realistic materials suggests excitonic condensation at tens of K at densities 10^{11}–10^{13} cm^{−2}. Various parts of the phase diagram, and most importantly the BECBCS crossover can in principle be reached through further tuning by external electric field and strain. We expect the materials predicted here to show superfluid transport properties such as enhanced Josephsonlike interlayer tunneling^{5}, and dissipationless charge counterflow^{48}, which have been experimentally observed in other bilayer designs and have potential for nextgeneration electronics and logic devices^{49}. Excitons have spin degree of freedom and the spin polarization states of the excitons can also act as a qubit^{3}. Moreover, excitonic ferromagnetism^{50} may arise from a mix of the singlet and triplet pairing states, which can be used to generate spin currents vital in spintronics. An interesting realization can be possible in nested cylindrical heterobilayers, where additional flexoelectric offset^{51} must be taken into account.
Methods
First principles DFT calculation
Band structures, phonon frequencies, and electronphonon coupling coefficients were calculated from density functional theory using LDA functional, as implemented in the Quantum Espresso package^{52}. Fully relativistic ultrasoft pseudopotentials were used to represent ionic cores and were obtained from the pslibrary^{53} (version 1.0.0, https://dalcorso.github.io/pslibrary/). The pseudopotentials and 60 Ry kinetic energy cutoff was used for all materials except those with Li, Mg, La, Zn, Cu, and Na. For the latter few, we used the cutoffs above the recommended minima, all higher than 60 Ry. A kgrid of 81 × 81 × 1 was used for Brillouin zone sampling. BFGS algorithm was used for structural relaxation. The structure was relaxed until the Hellmann–Feynman forces on the atoms were less than 2.6 meV/Å. A vacuum of 20 Å was used along direction perpendicular to the 2D sheet to reduce the interaction between the periodic images. Spinorbit coupling was included in all calculations. The response of the material to an external electric field (Supplementary Fig. 2) was calculated using the Vienna Ab Initio Simulation Package (VASP)^{54} implementation. A cutoff of 600 eV for the planewave basis was used. Ionelectron interactions were represented by allelectron projector augmented wave potentials. LDA functional is known to fortuitously capture well the interlayer van der Waals interactions^{55}. Additionally, semiempirical Grimme’s DFTD2 van der Waals correction to PBE functional was used to estimate the equilibrium interlayer distance and a good agreement with LDA functional was obtained.
We considered all 258 easilyexfoliable layers, with a small unit cell (≤6 atoms/unit cell) from the materials cloud database, as selected by its creators^{45}. Among these, 135 were found to have hexagonal lattices, and their pairscombinations were tested for lattice match. The lattice constant matching is important for excitonic condensation. In a heterostructure with a large difference in lattice constant, the materials are incommensurate, preventing zeromomentum excitons formation and excitonic condensation. This is analogous to the disappearance of excitonic condensation upon twisting the heterobilayers MoSe_{2}/WSe_{2}, observed recently^{31}: upon twisting, the lattices become incommensurate with momentum mismatch between the hole and electron valleys in the materials, the interlayer excitons formed thus have a large momentum, which destroys condensation.
Model hamiltonian analysis  exciton binding energy
The model Hamiltonian within the effective mass approximation for an electronhole pair in a bilayer semimetal is given by
Here, μ_{x,y} are the reduced masses in x and y directions, respectively, and V_{eh}(r) is the effective 2D Coulomb potential in a bilayer metal. Unlike 2D singlelayer^{56} and bilayer^{57} semiconductors, where intralayer and interlayer exciton binding energies are much larger compared to bulk due to weak screening, in semimetallic systems interactions are reduced significantly, leading to weaker binding. Here we adopt the random phase approximation (RPA) form of the screened potential suitable for metallic bilayers^{19,25}, given by
Here, κ is the background dielectric constant assumed to be unity in this work, s is the 2D screening wave number and d is the distance between the bilayers. In the ideal case of a twoband metal, screening s is given by (gm^{*}/κ)(1 − e^{−2πβn/gm*}), where n is the carrier density, g is valley and spin degeneracy, β is 1/k_{B}T and m^{*} is the effective mass. In a twodimensional metal with parabolic bands, the screening wave number is independent of density at zero temperature. However, at finite T, screening is both density and temperaturedependent, with increasing temperature leading to reduced screening (for details see 1.1 in Supplementary Note 1); T = 300 K is assumed here. V_{eh}(r) was obtained from V_{eh}(q) using Fourier transform. The excitonic binding energies E_{b} and wavefunctions were obtained by finding the eigenvalues and eigenfunctions of the effective mass Hamiltonian (Eq. (1)). Gaussian basis set of size 6 was used to expand the groundstate excitonic wavefunction and calculate the matrix elements for the kinetic and potential energy of the Hamiltonian. The expansion was optimized using the downhill simplex algorithm. The parameters for model Hamiltonian analysis were extracted from the heterostructures, not the constituent layers.
BCS mean field gap equation
Analogous to the BCS algebra, the order parameter Δ is obtained by solving the below equations selfconsistently^{21,44}
Here, V_{eh} is the attractive Coulomb potential as given by Eq. (2), V_{ee}(q) = (2π/κ)[(q + s − se^{−2qd})/((q + s)^{2} − s^{2}e^{−2qd})]^{30}, ε_{k} = 1/2(ℏ^{2}k^{2}/2m_{e} + ℏ^{2}k^{2}/2m_{h}), \(\bar \mu\) = 1/2(μ_{ex} − e^{2}nd/ε_{0}κ(1 + sd)), μ_{ex} here is chemical potential for excitons, n = Σ_{k} ½ (1 − ξ_{k}/E_{k}) and q = k − k′. The order parameter (∆) in Eq. (5) is the gap function. It is zero in the normal state and nonzero in the excitonic insulating state. A value of 2∆ denotes the gap in the excitonic insulator ground state. The form of BCS Eq. (5) remains the same when the modulation vector Q is finite^{15}, as Q does not enter the expression. This is because in ε_{k} (which depends on E_{c}(k) conduction band (electron) dispersion and E_{v}(k) valence band (hole) dispersion) k is referred to the respective band extrema^{15}. We do not include spin degrees of freedom and thus neglect any spintriplet excitonic order. All quantities in Eqs. (3)–(5) are assumed to be isotropic i.e. functions of magnitude of k, and these equations are solved selfconsistently to determine E_{k} and ∆_{k}. Subsequently, critical temperature is obtained from the maximum value of Δ_{k}. The mean field calculations give an approximate depiction of the excitonic condensate phase diagram and quantum Monte Carlo can be appropriate for a much higher accuracy^{58}.
Charge transfer model
For an isolated pair of materials with parabolic bands and VBMCBM overlap W_{0}, the charge transfer can be estimated using a parallelplate capacitor model as n = W_{0}/e^{2}(1/C + 1/C_{q}) where C = ε_{0}/d and C_{q} = ge^{2}μ/2πℏ^{2} are the classical and quantum bilayer capacitances, respectively. One has n[10^{13} cm^{−2}] = W_{0}[eV]/(0.18d[Å] + 0.02/μ[m_{e}]) for numerical estimates. In a stacked heterostructure, with a new band overlap W, the density is expressed as n = W(C + C_{q})/e^{2}(1 + C/C_{q}), or n[10^{13}cm^{−2}] = W[eV](1 + 7.6μ[m_{e}]d[Å])/(0.18d[Å] + 0.02/μ[m_{e}]) for numerical estimates.
Data availability
The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary information files. An archive with optimized geometries for heterostructures listed in Fig. 3 is provided as Supplementary dataset 1. The data in the dataset is deposited on the Zenodo database https://doi.org/10.5281/zenodo.3822513.
References
 1.
Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K. & Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000).
 2.
Dadras, S., Gresch, A., Groiseau, C., Wimberger, S. & Summy, G. S. Quantum Walk in Momentum Space with a BoseEinstein Condensate. Phys. Rev. Lett. 121, 070402 (2018).
 3.
Byrnes, T., Wen, K. & Yamamoto, Y. Macroscopic quantum computation using BoseEinstein condensates. Phys. Rev. A 85, 040306 (2012).
 4.
Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
 5.
Burg, G. W. et al. Strongly Enhanced Tunneling at Total Charge Neutrality in DoubleBilayer GrapheneWSe2 Heterostructures. Phys. Rev. Lett. 120, 177702 (2018).
 6.
Ueda, M. Fundamentals and New Frontiers of BoseEinstein Condensation (World Scientific, 2010).
 7.
Preskill, J. Magnetic Monopoles. Annu. Rev. Nucl. Part. Sci. 34, 461–530 (1984).
 8.
Kiselev, N. S., Bogdanov, A. N., Schäfer, R. & Rößler, U. K. Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies? J. Phys. Appl. Phys. 44, 392001 (2011).
 9.
Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152–156 (2013).
 10.
Keldysh, L. & Kozlov, A. Collective properties of excitons in semiconductors. Sov. Phys. JETP 27, 521 (1968).
 11.
Nozières, P. & SchmittRink, S. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity. J. Low. Temp. Phys. 59, 195–211 (1985).
 12.
Snoke, D. Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368–1372 (2002).
 13.
Fogler, M. M., Butov, L. V. & Novoselov, K. S. Hightemperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
 14.
Mott, N. F. The transition to the metallic state. Philos. Mag. J. Theor. Exp. Appl. Phys. 6, 287–309 (1961).
 15.
Jérome, D., Rice, T. M. & Kohn, W. Excitonic Insulator. Phys. Rev. 158, 462–475 (1967).
 16.
Rossnagel, K. On the origin of chargedensity waves in select layered transitionmetal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).
 17.
Kozlov, A. & Maksimov, L. The metaldielectric divalent crystal phase transition. Sov. Phys. JETP 2, 790 (1965).
 18.
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetalsemiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).
 19.
Lozovik, Y. E. & Yudson, V. Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).
 20.
Datta, S., Melloch, M. R. & Gunshor, R. L. Possibility of an excitonic ground state in quantum wells. Phys. Rev. B 32, 2607–2609 (1985).
 21.
Zhu, X., Littlewood, P. B., Hybertsen, M. S. & Rice, T. M. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett. 74, 1633–1636 (1995).
 22.
Guseinov, R. & Keldysh, L. Nature of the phase transition under the conditions of an ‘excitonic’ instability in the electronic spectrum of a crystal. Sov. Phys. JETP 36, 1193 (1973).
 23.
Min, H., Bistritzer, R., Su, J.J. & MacDonald, A. H. Roomtemperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).
 24.
Kharitonov, M. Y. U. & Efetov, K. B. Electron screening and excitonic condensation in doublelayer graphene systems. Phys. Rev. B 78, 241401 (2008).
 25.
Lozovik, Y. U. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electronhole pairs in a twolayer graphene system: Correlation effects. Phys. Rev. B 86, 045429 (2012).
 26.
Perali, A., Neilson, D. & Hamilton, A. R. Hightemperature superfluidity in doublebilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).
 27.
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751 (2017).
 28.
McCann, E. & Fal’ko, V. I. Landaulevel degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).
 29.
Kolomeisky, E. B., Straley, J. P. & Abrams, D. L. Space charge and screening in bilayer graphene. J. Phys. Condens. Matter 28, 47LT01 (2016).
 30.
Debnath, B., Barlas, Y., Wickramaratne, D., Neupane, M. R. & Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: Strong coupling regime. Phys. Rev. B 96, 174504 (2017).
 31.
Wang, Z. et al. Evidence of hightemperature exciton condensation in twodimensional atomic double layers. Nature 574, 76–80 (2019).
 32.
Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).
 33.
Chen, C., Singh, B., Lin, H. & Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T TiSe2 exposes its excitonic character. Phys. Rev. Lett. 121, 226602 (2018).
 34.
Bianco, R., Calandra, M. & Mauri, F. Electronic and vibrational properties of TiSe2 in the chargedensitywave phase from first principles. Phys. Rev. B 92, 094107 (2015).
 35.
Pasquier, D. & Yazyev, O. V. Excitonic effects in twodimensional TiSe2 from hybrid density functional theory. Phys. Rev. B 98, 235106 (2018).
 36.
Zhu, Z., Cheng, Y. & Schwingenschlögl, U. Origin of the charge density wave in 1TTiSe2. Phys. Rev. B 85, 245133 (2012).
 37.
Gor’kov, L. P. & Grüner, G. in Charge Density Waves in Solids (eds. Gor’kov, L. P. & Grüner, G.) 25, 1–13 (Elsevier, 1989).
 38.
Rice, M. J. & Gartstein, Y. N. The excitonic ground state of the halffilled Peierls insulator. J. Phys. Condens. Matter 17, 4615–4620 (2005).
 39.
Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in twodimensional systems. J. Phys. C. Solid State Phys. 6, 1181–1203 (1973).
 40.
Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of twodimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).
 41.
Lozovik, Y. E. & Yudson, V. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Zh. Eksp. Teor. Fiz. 71, 738–753 (1976).
 42.
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
 43.
Butov, L. V. Cold exciton gases in coupled quantum well structures. J. Phys. Condens. Matter 19, 295202 (2007).
 44.
Wu, F.C., Xue, F. & MacDonald, A. H. Theory of twodimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).
 45.
Mounet, N. et al. Twodimensional materials from highthroughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).
 46.
Hellgren, M. et al. Critical role of the exchange interaction for the electronic structure and chargedensitywave formation in TiSe2. Phys. Rev. Lett. 119, 176401 (2017).
 47.
Zenker, B., Fehske, H. & Beck, H. Fate of the excitonic insulator in the presence of phonons. Phys. Rev. B 90, 195118 (2014).
 48.
Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electronhole pairing. Phys. Rev. Lett. 93, 036802 (2004).
 49.
Banerjee, S. K., Register, L. F., Tutuc, E., Reddy, D. & MacDonald, A. H. Bilayer pseudospin fieldeffect transistor (BiSFET): a proposed new logic device. IEEE Electron Device Lett. 30, 158–160 (2009).
 50.
Volkov, B. A., Kopaev, Yu. V. & Rusinov, A. I. Theory of ‘excitonic’ ferromagnetism. Sov. Phys. JETP 41, 952 (1975).
 51.
Artyukhov, V. I., Gupta, S., Kutana, A. & Yakobson, B. I. Flexoelectricity and charge separation in carbon nanotubes. Nano Lett. 20, 3240–3246 (2020).
 52.
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter. 29, 465901 (2017).
 53.
Dal Corso, A. Pseudopotentials periodic table: from H to Pu. Comput. Mater. Sci. 95, 337–350 (2014).
 54.
Kresse, G. & Furthmüller, J. Efficiency of abinitio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
 55.
Mostaani, E., Drummond, N. D. & Fal’ko, V. I. Quantum Monte Carlo Calculation of the binding energy of bilayer graphene. Phys. Rev. Lett. 115, 115501 (2015).
 56.
Wang, L., Kutana, A. & Yakobson, B. I. Manybody and spinorbit effects on directindirect band gap transition of strained monolayer MoS2 and WS2. Ann. Phys. 526, L7–L12 (2014).
 57.
Okada, M. et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 12, 2498–2505 (2018).
 58.
De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electronhole bilayer. Phys. Rev. Lett. 88, 206401 (2002).
Acknowledgements
This work was supported by the US Army Research Office, Electronics division (W911NF1610255), and by the Robert Welch Foundation (C1590). The authors acknowledge the DoD HPCMP, DOE NERSC, and NSF XSEDE for computing resources, and Peter J. Reynolds for useful discussion.
Author information
Affiliations
Contributions
S.G., A.K., and B.I.Y. conceived the project. S.G. and A.K. identified and refined the structures from the databases and performed all firstprinciples simulations. All authors contributed to the writing of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Communications thanks Oleg Yazyev and the other, anonymous reviewer(s), for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gupta, S., Kutana, A. & Yakobson, B.I. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat Commun 11, 2989 (2020). https://doi.org/10.1038/s41467020167370
Received:
Accepted:
Published:
Further reading

What Dictates Rashba Splitting in 2D van der Waals Heterobilayers
Journal of the American Chemical Society (2021)

Heterobilayer with Ferroelectric Switching of Topological State
Nano Letters (2021)

Theoretical Prediction of TwoDimensional Materials, Behavior, and Properties
ACS Nano (2021)

2D/2D Heterostructures: Rational Design for Advanced Batteries and Electrocatalysis
ENERGY & ENVIRONMENTAL MATERIALS (2021)

Exciton energy spectra in polyyne chains
Physical Review Research (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.