Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased levels of hydrogen sulfide in the hypothalamic paraventricular nucleus contribute to sympathetic hyperactivity induced by cerebral infarction

Abstract

Paroxysmal sympathetic hyperactivity (PSH) is a common clinical feature secondary to ischemic stroke (IS), but its mechanism is poorly understood. We aimed to investigate the role of H2S in the pathogenesis of PSH. IS patients were divided into malignant (MCI) and non-malignant cerebral infarction (NMCI) group. IS in rats was induced by the right middle cerebral artery occlusion (MCAO). H2S donor (NaHS) or inhibitor (aminooxy-acetic acid, AOAA) were microinjected into the hypothalamic paraventricular nucleus (PVN). Compared with the NMCI group, patients in the MCI group showed PSH, including tachycardia, hypertension, and more plasma norepinephrine (NE) that was positively correlated with levels of creatine kinase, glutamate transaminase, and creatinine respectively. The 1-year survival rate of patients with high plasma NE levels was lower. The hypothalamus of rats with MCAO showed increased activity, especially in the PVN region. The levels of H2S in PVN of the rats with MCAO were reduced, while the blood pressure and renal sympathetic discharge were increased, which could be ameliorated by NaHS and exacerbated by AOAA. NaHS completely reduced the disulfide bond of NMDAR1 in PC12 cells. The inhibition of NMDAR by MK-801 microinjected in PVN of rats with MCAO also could lower blood pressure and renal sympathetic discharge. In conclusion, PSH may be associated with disease progression and survival in patients with IS. Decreased levels of H2S in PVN were involved in regulating sympathetic efferent activity after cerebral infarction. Our results might provide a new strategy and target for the prevention and treatment of PSH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perkes IE, Menon DK, Nott MT, Baguley IJ. Paroxysmal sympathetic hyperactivity after acquired brain injury: a review of diagnostic criteria. Brain Inj. 2011;25:925–32.

    Article  PubMed  Google Scholar 

  2. Baguley IJ, Perkes IE, Fernandez-Ortega JF, Rabinstein AA, Dolce G, Hendricks HT, et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J Neurotrauma. 2014;31:1515–20.

    Article  PubMed  Google Scholar 

  3. Fernandez-Ortega JF, Baguley IJ, Gates TA, Garcia-Caballero M, Quesada-Garcia JG, Prieto-Palomino MA. Catecholamines and Paroxysmal Sympathetic Hyperactivity after Traumatic Brain Injury. J Neurotrauma. 2017;34:109–14.

    Article  PubMed  Google Scholar 

  4. Hinson HE, Puybasset L, Weiss N, Perlbarg V, Benali H, Galanaud D, et al. Neuroanatomical basis of paroxysmal sympathetic hyperactivity: a diffusion tensor imaging analysis. Brain Inj. 2015;29:455–61.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Meyfroidt G, Baguley IJ, Menon DK. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 2017;16:721–9.

    Article  PubMed  Google Scholar 

  6. Jafari AA, Shah M, Mirmoeeni S, Hassani MS, Nazari S, Fielder T, et al. Paroxysmal sympathetic hyperactivity during traumatic brain injury. Clin Neurol Neurosurg. 2022;212:107081.

    Article  PubMed  Google Scholar 

  7. Louraoui SM, Fliyou F, Aasfara J, El Azhari A. Paroxysmal Sympathetic Hyperactivity After Traumatic Brain Injury: What Is Important to Know? Cureus. 2022;14:e24693.

    PubMed  PubMed Central  Google Scholar 

  8. Khalid F, Yang GL, McGuire JL, Robson MJ, Foreman B, Ngwenya LB, et al. Autonomic dysfunction following traumatic brain injury: translational insights. Neurosurg Focus. 2019;47:E8.

    Article  PubMed  Google Scholar 

  9. Dias C, Gaio AR, Monteiro E, Barbosa S, Cerejo A, Donnelly J, et al. Kidney-brain link in traumatic brain injury patients? A preliminary report. Neurocrit Care. 2015;22:192–201.

    Article  PubMed  Google Scholar 

  10. Fernandez-Ortega JF, Prieto-Palomino MA, Munoz-Lopez A, Lebron-Gallardo M, Cabrera-Ortiz H, Quesada-Garcia G. Prognostic influence and computed tomography findings in dysautonomic crises after traumatic brain injury. J Trauma. 2006;61:1129–33.

    Article  PubMed  Google Scholar 

  11. Lv LQ, Hou LJ, Yu MK, Qi XQ, Chen HR, Chen JX, et al. Prognostic influence and magnetic resonance imaging findings in paroxysmal sympathetic hyperactivity after severe traumatic brain injury. J Neurotrauma. 2010;27:1945–50.

    Article  PubMed  Google Scholar 

  12. Nott MT, Chapparo C, Baguley IJ. Agitation following traumatic brain injury: an Australian sample. Brain Inj. 2006;20:1175–82.

    Article  PubMed  Google Scholar 

  13. Baguley IJ, Nott MT, Slewa-Younan S, Heriseanu RE, Perkes IE. Diagnosing dysautonomia after acute traumatic brain injury: evidence for overresponsiveness to afferent stimuli. Arch Phys Med Rehabil. 2009;90:580–6.

    Article  PubMed  Google Scholar 

  14. Samuel S, Lee M, Brown RJ, Choi HA, Baguley IJ. Incidence of paroxysmal sympathetic hyperactivity following traumatic brain injury using assessment tools. Brain Inj. 2018;32:1115–21.

    Article  PubMed  Google Scholar 

  15. Mathew MJ, Deepika A, Shukla D, Devi BI, Ramesh VJ. Paroxysmal sympathetic hyperactivity in severe traumatic brain injury. Acta Neurochir. 2016;158:2047–52.

    Article  PubMed  Google Scholar 

  16. Ammar MA, Hussein NS. Using propranolol in traumatic brain injury to reduce sympathetic storm phenomenon: A prospective randomized clinical trial. Saudi J Anaesth. 2018;12:514–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jang SH, Kwon HG. Injury of the Hypothalamus in Patients With Hypoxic-Ischemic Brain Injury: A Diffusion Tensor Imaging Study. Am J Phys Med Rehabil. 2018;97:160–3.

    Article  PubMed  Google Scholar 

  18. Zhao ZD, Yang WZ, Gao C, Fu X, Zhang W, Zhou Q, et al. A hypothalamic circuit that controls body temperature. Proc Natl Acad Sci USA. 2017;114:2042–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee SJ, Jang SH. Hypothalamic injury in spontaneous subarachnoid hemorrhage: a diffusion tensor imaging study. Clin Auton Res. 2021;31:321–2.

    Article  PubMed  Google Scholar 

  20. Jang SH, Yi JH, Kim SH, Kwon HG. Relation between injury of the hypothalamus and subjective excessive daytime sleepiness in patients with mild traumatic brain injury. J Neurol Neurosurg Psychiatry. 2016;87:1260–1.

    Article  PubMed  Google Scholar 

  21. Jang SH, Seo YS. Neurogenic fever due to injury of the hypothalamus in a stroke patient: Case report. Medicine. 2021;100:e24053.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jang SH, Choi KH. Paroxysmal sympathetic hyperactivity concurrent with hypothalamic injury in a patient with intracerebral hemorrhage: A case report. Medicine. 2022;101:e30058.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ding JS, Zhang Y, Wang TY, Li X, Ma C, Xu ZM, et al. Therapeutic applications of hydrogen sulfide and novel donors for cerebral ischemic stroke: a narrative review. Med Gas Res. 2023;13:7–9.

    Article  CAS  PubMed  Google Scholar 

  24. Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, et al. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)-N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules. 2022;27:1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pomierny B, Krzyzanowska W, Jurczyk J, Skorkowska A, Strach B, Szafarz M, et al. The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H(2)S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. Int J Mol Sci. 2021;22:7816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP, et al. Melatonin suppresses sympathetic vasomotor tone through enhancing GABA(A) receptor activity in the hypothalamus. Front Physiol. 2023;14:1166246.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Messmer SJ, Salmeron KE, Frank JA, McLouth CJ, Lukins DE, Hammond TC, et al. Extended Middle Cerebral Artery Occlusion (MCAO) Model to Mirror Stroke Patients Undergoing Thrombectomy. Transl Stroke Res. 2022;13:604–15.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Yin J, Xu F, Zhai J, Yin J, Ge M, et al. Isoflurane post-conditioning contributes to anti-apoptotic effect after cerebral ischaemia in rats through the ERK5/MEF2D signaling pathway. J Cell Mol Med. 2021;25:3803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen Z, Zhang Y, Wu X, Huang H, Chen W, Su Y. Characteristics and Outcomes of Paroxysmal Sympathetic Hyperactivity in Anti-NMDAR Encephalitis. Front Immunol. 2022;13:858450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng S, Chen JX, Liu S, Zheng P, Sun J, Zhang X, et al. Clinical and prognostic study of anti-N-methyl-D-aspartate receptor encephalitis children with paroxysmal sympathetic hyperactivity syndrome. Zhonghua Yi Xue Za Zhi. 2021;101:3600–3..

  31. Xu L, Qiu X, Wang S, Wang Q, Zhao XL. NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction. Neurosci Bull. 2019;35:347–61.

    Article  PubMed  Google Scholar 

  32. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, et al. Cysteine regulation of protein function-as exemplified by NMDA-receptor modulation. Trends Neurosci. 2002;25:474–80.

    Article  CAS  PubMed  Google Scholar 

  33. Siefferman JW, Lai G. Propranolol for Paroxysmal Sympathetic Hyperactivity with Lateralizing Hyperhidrosis after Stroke. Case Rep Neurol Med. 2015;2015:421563.

    PubMed  PubMed Central  Google Scholar 

  34. Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci. 2021;287:120106.

    Article  CAS  PubMed  Google Scholar 

  35. Sternberg Z, Schaller B. Central Noradrenergic Agonists in the Treatment of Ischemic Stroke-an Overview. Transl Stroke Res. 2020;11:165–84.

    Article  PubMed  Google Scholar 

  36. Oto J, Suzue A, Inui D, Fukuta Y, Hosotsubo K, Torii M, et al. Plasma proinflammatory and anti-inflammatory cytokine and catecholamine concentrations as predictors of neurological outcome in acute stroke patients. J Anesth. 2008;22:207–12.

    Article  PubMed  Google Scholar 

  37. Chamorro A, Amaro S, Vargas M, Obach V, Cervera A, Gomez-Choco M, et al. Catecholamines, infection, and death in acute ischemic stroke. J Neurol Sci. 2007;252:29–35.

    Article  CAS  PubMed  Google Scholar 

  38. Strittmatter M, Meyer S, Fischer C, Georg T, Schmitz B. Location-dependent patterns in cardio-autonomic dysfunction in ischaemic stroke. Eur Neurol. 2003;50:30–8.

    Article  CAS  PubMed  Google Scholar 

  39. Huerta de la Cruz S, Rodriguez-Palma EJ, Santiago-Castaneda CL, Beltran-Ornelas JH, Sanchez-Lopez A, Rocha L, et al. Exogenous hydrogen sulfide restores CSE and CBS but no 3-MST protein expression in the hypothalamus and brainstem after severe traumatic brain injury. Metab Brain Dis. 2022;37:1863–74.

    Article  CAS  PubMed  Google Scholar 

  40. Coletti R, Almeida-Pereira G, Elias LL, Antunes-Rodrigues J. Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm Behav. 2015;67:12–20.

    Article  CAS  PubMed  Google Scholar 

  41. Liang YF, Zhang DD, Yu XJ, Gao HL, Liu KL, Qi J, et al. Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett. 2017;270:62–71.

    Article  CAS  PubMed  Google Scholar 

  42. Liao Y, Fan Y, He Q, Li Y, Wu D, Jiang E. Exogenous H(2)S Ameliorates High Salt-Induced Hypertension by Alleviating Oxidative Stress and Inflammation in the Paraventricular Nucleus in Dahl S Rats. Cardiovasc Toxicol. 2022;22:477–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu CW, Liao KH, Tseng H, Wu CM, Chen HY, Lai TW. Hypothermia but not NMDA receptor antagonism protects against stroke induced by distal middle cerebral arterial occlusion in mice. PLoS One. 2020;15:e0229499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, et al. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 2013;19:448–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang Y, Zhang Z, Huang Y, Mao Z, Yang X, Nakamura Y, et al. Induction of inactive TGF-beta1 monomer formation by hydrogen sulfide contributes to its suppressive effects on Ang II- and TGF-beta1-induced EMT in renal tubular epithelial cells. Biochem Biophys Res Commun. 2018;501:534–40.

    Article  CAS  PubMed  Google Scholar 

  46. Wang R, Tao B, Fan Q, Wang S, Chen L, Zhang J, et al. Fatty-acid receptor CD36 functions as a hydrogen sulfide-targeted receptor with its Cys333-Cys272 disulfide bond serving as a specific molecular switch to accelerate gastric cancer metastasis. EBioMedicine. 2019;45:108–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mao Z, Yang X, Mizutani S, Huang Y, Zhang Z, Shinmori H, et al. Hydrogen Sulfide Mediates Tumor Cell Resistance to Thioredoxin Inhibitor. Front Oncol. 2020;10:252.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (32271155, 81770499, 31871154), and the Natural Science Foundation of Hebei [CN] (H2023206367, H2020206350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Teng or Yuming Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Miao, Y., Wang, P. et al. Decreased levels of hydrogen sulfide in the hypothalamic paraventricular nucleus contribute to sympathetic hyperactivity induced by cerebral infarction. Hypertens Res 47, 1323–1337 (2024). https://doi.org/10.1038/s41440-024-01643-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-024-01643-5

Keywords

Search

Quick links