Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2023 OSAKA
  • Published:

SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats

Abstract

Hypertension is well-known to often coexist with diabetes mellitus (DM) in humans. Treatment with sodium-glucose cotransporter 2 (SGLT2) inhibitors has been shown to decrease both the blood glucose and the blood pressure (BP) in such patients. Some reports show that SGLT2 inhibitors improve the BP by decreasing the activities of the sympathetic nervous system. Therefore, we hypothesized that SGLT2 inhibitors might alleviate hypertension via attenuating sympathetic nervous activity. Combined SGLT2/SGLT1 inhibitor therapy is also reported as being rather effective for decreasing the BP. In this study, we examined the effects of SGLT2 and SGLT1 inhibitors on the bulbospinal neurons of the rostral ventrolateral medulla (RVLM). To investigate whether bulbospinal RVLM neurons are sensitive to SGLT2 and SGLT1 inhibitors, we examined the changes in the neuronal membrane potentials (MPs) of these neurons using the whole-cell patch-clamp technique during superfusion of the cells with the SGLT2 and SGLT1 inhibitors. A brainstem–spinal cord preparation was used for the experiments. Our results showed that superfusion of the RVLM neurons with SGLT2 and SGLT1 inhibitor solutions induced hyperpolarization of the neurons. Histological examination revealed the presence of SGLT2s and SGLT1s in the RVLM neurons, and also colocalization of SGLT2s with SGLT1s. These results suggest the involvement of SGLT2s and SGLT1s in regulating the activities of the RVLM neurons, so that SGLT2 and SGLT1 inhibitors may inactivate the RVLM neurons hyperpolarized by empagliflozin.

SGLT2 and SGLT1 inhibitors suppressed the activities of the bulbospinal RVLM neurons in the brainstem-spinal preparations, suggesting the possibilities of lowering BP by decreasing the sympathetic nerve activities. RVLM, rostral ventrolateral medulla. IML, intralateral cell column. aCSF, artificial cerebrospinal fluid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ghezzi C, Loo DD, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia. 2018;61:2087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguilar-Gallardo JS, Correa A, Contreras JP. Cardio-renal benefits of sodium-glucose co-transporter 2 inhibitors in heart failure with reduced ejection fraction: mechanisms and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 2022;8:311–21.

    Article  PubMed  Google Scholar 

  3. Erdogan MA, Yusuf D, Christy J, Solmaz V, Erdogan A, Taskiran E, et al. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 2018;18:81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takeda K, Ono H, Ishikawa K, Ohno T, Kumagai J, Ochiai H, et al. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats. BMJ Open Diabetes Res Care. 2021;9:e002104.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Al Hamed FA, Elewa H. Potential therapeutic effects of sodium glucose-linked cotransporter 2 inhibitors in stroke. Clin Ther. 2020;42:e242–9.

    Article  CAS  PubMed  Google Scholar 

  6. Kawasoe S, Maruguchi Y, Kajiya S, Uenomachi H, Miyata M, Kawasoe M, et al. Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol Toxicol. 2017;18:23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reed JW. Impact of sodium-glucose cotransporter 2 inhibitors on blood pressure. Vasc Health Risk Manag. 2016;12:393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Briasoulis A, Al Dhaybi O, Bakris GL. SGLT2 inhibitors and mechanisms of hypertension. Curr Cardiol Rep. 2018;20:1.

    Article  PubMed  Google Scholar 

  9. Herat LY, Matthews J, Azzam O, Schlaich MP, Matthews VB. Targeting features of the metabolic syndrome through sympatholytic effects of SGLT2 inhibition. Curr Hypertens Rep. 2022;24:67–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright EM, Loo DDFL, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–94.

    Article  CAS  PubMed  Google Scholar 

  11. Sano R, Shinozaki Y, Ohta T. Sodium-glucose cotransporters: functional properties and pharmaceutical potential. J Diabetes Investig. 2020;11:770–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pitt B, Bhatt DL. Does SGLT1 inhibition add benefit to SGLT2 inhibition in Type 2 diabetes? Circulation. 2021;144:4–6.

    Article  CAS  PubMed  Google Scholar 

  13. Song P, Huang W, Onishi A, Patel R, Kim YC, van Ginkel C, et al. Knockout of Na+-glucose cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase NOS1 in the macula densa and glomerular hyperfiltration. Am J Physiol Renal Physiol. 2019;317:F207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenstock J, Cefalu WT, Lapuerta P, Zambrowicz B, Ogbaa I, Banks P, et al. Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients with type 2 diabetes on metformin monotherapy. Diabetes Care. 2015;38:431–8.

    Article  CAS  PubMed  Google Scholar 

  15. de Boer RA, Núñez J, Kozlovski P, Wang Y, Proot P, Keefe D. Effects of the dual sodium-glucose linked transporter inhibitor, licogliflozin vs placebo or empagliflozin in patients with type 2 diabetes and heart failure. Br J Clin Pharmacol. 2020;86:1346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Madden CJ, Sved AF. Rostral ventrolateral medulla C1 neurons and cardiovascular regulation. Cell Mol Neurobiol. 2003;23:739–49.

    Article  PubMed  Google Scholar 

  17. Oshima N, Kumagai H, Onimaru H, Kawai A, Pilowsky PM, Iigaya K, et al. Monosynaptic excitatory connection from the rostral ventrolateral medulla to sympathetic preganglionic neurons revealed by simultaneous recordings. Hypertens Res. 2008;31:1445–54.

    Article  PubMed  Google Scholar 

  18. Pilowsky PM, Goodchild AK. Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens. 2002;20:1675–88.

    Article  CAS  PubMed  Google Scholar 

  19. Oshima N, Onimaru H, Matsubara H, Uchida T, Watanabe A, Takechi H, et al. Uric acid, indoxyl sulfate, and methylguanidine activate bulbospinal neurons in the RVLM via their specific transporters and by producing oxidative stress. Neuroscience. 2015;304:133–45.

    Article  CAS  PubMed  Google Scholar 

  20. Oshima N, Onimaru H, Yamagata A, Itoh S, Matsubara H, Imakiire T, et al. Erythropoietin, a putative neurotransmitter during hypoxia, is produced in RVLM neurons and activates them in neonatal Wistar rats. Am J Physiol Regul Integr Comp Physiol. 2018;314:R700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arab HH, Safar MM, Shahin NN. Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by dapagliflozin attenuates neuronal injury and motor dysfunction in rotenone-induced Parkinson’s disease rat model. ACS Chem. Neurosci. 2021;17:689–703.

    Article  Google Scholar 

  22. Hierro-Bujalance C, Infante-Garcia C, Del Marco A, Herrera M, Carranza-Naval MJ, Suarez J, et al. Empagliflozin reduces vascular damage and cognitive impairment in a mixed murine model of Alzheimer’s disease and type 2 diabetes. Alzheimers Res Ther. 2020;12:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective effect of SGLT2 Inhibitors. Molecules. 2021;28:7213. 26

    Article  Google Scholar 

  24. Poppe R, Karbach U, Gambaryan S, Wiesinger H, Lutzenburg M, Kraemer M, et al. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J Neurochem. 1997;69:84–94.

    Article  CAS  PubMed  Google Scholar 

  25. Ishida N, Saito M, Sato S, Tezuka Y, Sanbe A, Taira E, et al. Mizagliflozin, a selective SGLT1 inhibitor, improves vascular cognitive impairment in a mouse model of small vessel disease. Pharmacol Res Perspect. 2021;9:e00869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kondo H, Akoumianakis I, Badi I, Akawi N, Kotanidis CP, Polkinghorne M, et al. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur Heart J. 2021;42:4947–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Oshima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, N., Onimaru, H., Yamashiro, A. et al. SGLT2 and SGLT1 inhibitors suppress the activities of the RVLM neurons in newborn Wistar rats. Hypertens Res 47, 46–54 (2024). https://doi.org/10.1038/s41440-023-01417-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01417-5

Keywords

This article is cited by

Search

Quick links