Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High plasma aldosterone concentration is associated with worse 24-h ambulatory blood pressure profile in patients with primary aldosteronism

Abstract

Patients with primary aldosteronism (PA) have a higher risk of cardiovascular disease (CVD) than essential hypertension due to underlying hyperaldosteronism. However, the association between high plasma aldosterone concentrations (PACs) and diurnal blood pressure (BP) variation has not been fully elucidated. Because abnormal ambulatory blood pressure monitoring (ABPM) profiles are associated with increased CVD risk, we investigated the association between PACs and the ABPM profile in 36 patients with PA diagnosed by confirmatory tests who underwent adrenal venous sampling (AVS). The clinical parameters were measured during hospitalization for AVS. The dietary salt intake of hospitalized patients was controlled at 6 g/day. During AVS, blood samples were collected from the inferior vena cava before and 1 h after adrenocorticotropic hormone (ACTH) stimulation to measure the PACs. The post-stimulation PAC had a significant negative correlation with nocturnal BP dipping rates (R = −0.387, p = 0.020), whereas pre-stimulation PAC did not (R = −0.217, p = 0.204). The nocturnal BP dipping rates were significantly lower in the high PAC group (PAC higher than the median) than low PAC group (PAC lower than the median) (p = 0.009). Multiple regression analysis revealed that high PAC was an independent factor contributing to low nocturnal BP dipping rates (β = −0.316, p = 0.038). In conclusion, in patients with PA, hyperaldosteronism is associated with nocturnal hypertension, which is an important risk factor for CVD. Additionally, ACTH stimulation may improve the sensitivity of PACs as a clinical indicator of nocturnal hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

All relevant data are included within the paper. The datasets are available from the corresponding authors upon reasonable request.

References

  1. Käyser SC, Dekkers T, Groenewoud HJ, van der Wilt GJ, Carel Bakx J, van der Wel MC, et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: A systematic review and meta-regression analysis. J Clin Endocrinol Metab. 2016;101:2826–35.

    Article  PubMed  Google Scholar 

  2. Burrello J, Monticone S, Losano I, Cavaglià G, Buffolo F, Tetti M, et al. Prevalence of hypokalemia and primary aldosteronism in 5100 patients referred to a tertiary hypertension unit. Hypertension 2020;75:1025–33.

    Article  CAS  PubMed  Google Scholar 

  3. Ohno Y, Sone M, Inagaki N, Yamasaki T, Ogawa O, Takeda Y, et al. Prevalence of cardiovascular disease and its risk factors in primary aldosteronism: A multicenter study in Japan. Hypertension 2018;71:530–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kawashima A, Sone M, Inagaki N, Takeda Y, Itoh H, Kurihara I, et al. Renal impairment is closely associated with plasma aldosterone concentration in patients with primary aldosteronism. Eur J Endocrinol. 2019;181:339–50.

    Article  CAS  PubMed  Google Scholar 

  5. Buffolo F, Tetti M, Mulatero P, Monticone S. Aldosterone as a mediator of cardiovascular damage. Hypertension 2022;79:1899–911.

    Article  CAS  PubMed  Google Scholar 

  6. Murata M, Kitamura T, Tamada D, Mukai K, Kurebayashi S, Yamamoto T, et al. Plasma aldosterone level within the normal range is less associated with cardiovascular and cerebrovascular risk in primary aldosteronism. J Hypertens. 2017;35:1079–85.

    Article  CAS  PubMed  Google Scholar 

  7. Kario K, Shin J, Chen CH, Buranakitjaroen P, Chia YC, Divinagracia R, et al. Expert panel consensus recommendations for ambulatory blood pressure monitoring in Asia: The HOPE Asia Network. J Clin Hypertens (Greenwich). 2019;21:1250–83.

    Article  PubMed  Google Scholar 

  8. Shintani Y, Kikuya M, Hara A, Ohkubo T, Metoki H, Asayama K, et al. Ambulatory blood pressure, blood pressure variability and the prevalence of carotid artery alteration: the Ohasama study. J Hypertens. 2007;25:1704–10.

    Article  CAS  PubMed  Google Scholar 

  9. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 2007;50:325–32.

    Article  CAS  PubMed  Google Scholar 

  10. Kario K. Nocturnal Hypertension: New Technology and Evidence. Hypertension 2018;71:997–1009.

    Article  CAS  PubMed  Google Scholar 

  11. Boggia J, Li Y, Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, et al. Prognostic accuracy of day versus night ambulatory blood pressure: A cohort study. Lancet 2007;370:1219–29.

    Article  PubMed  Google Scholar 

  12. Kario K, Matsuo T, Kobayashi H, Imiya M, Matsuo M, Shimada K. Nocturnal fall of blood pressure and silent cerebrovascular damage in elderly hypertensive patients. Advanced silent cerebrovascular damage in extreme dippers. Hypertension. 1996;27:130–5.

    Article  CAS  PubMed  Google Scholar 

  13. Yano Y, Inokuchi T, Hoshide S, Kanemaru Y, Shimada K, Kario K. Association of poor physical function and cognitive dysfunction with high nocturnal blood pressure level in treated elderly hypertensive patients. Am J Hypertens. 2011;24:285–91.

    Article  PubMed  Google Scholar 

  14. Yano Y, Ning H, Muntner P, Reis JP, Calhoun DA, Viera AJ, et al. Nocturnal blood pressure in young adults and cognitive function in Midlife: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Hypertens. 2015;28:1240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoshide S, Kario K, Hoshide Y, Umeda Y, Hashimoto T, Kunii O, et al. Associations between nondipping of nocturnal blood pressure decrease and cardiovascular target organ damage in strictly selected community-dwelling normotensives. Am J Hypertens. 2003;16:434–8.

    Article  PubMed  Google Scholar 

  16. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime blood pressure phenotype and cardiovascular prognosis: Practitioner-based nationwide JAMP study. Circulation 2020;142:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Middeke M, Schrader J. Nocturnal blood pressure in normotensive subjects and those with white coat, primary, and secondary hypertension. Bmj 1994;308:630–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ceruti M, Petramala L, Cotesta D, Cerci S, Serra V, Caliumi C, et al. Ambulatory blood pressure monitoring in secondary arterial hypertension due to adrenal diseases. J Clin Hypertens (Greenwich). 2006;8:642–8.

    Article  PubMed  Google Scholar 

  19. Middeke M, Klüglich M, Holzgreve H. Circadian blood pressure rhythm in primary and secondary hypertension. Chronobiol Int. 1991;8:451–9.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Q, Hong M, Xu J, Tang X, Zhu L, Gao P, et al. Diurnal blood pressure pattern and cardiac damage in hypertensive patients with primary aldosteronism. Endocrine 2021;72:835–43.

    Article  CAS  PubMed  Google Scholar 

  21. Penzo M, Palatini P, Rossi GP, Zanin L, Pessina AC. In primary aldosteronism the circadian blood pressure rhythm is similar to that in primary hypertension. Clin Exp Hypertens. 1994;16:659–73.

    Article  CAS  PubMed  Google Scholar 

  22. Mansoor GA, White WB. Circadian blood pressure variation in hypertensive patients with primary hyperaldosteronism. Hypertension 1998;31:843–7.

    Article  CAS  PubMed  Google Scholar 

  23. Libianto R, Menezes S, Kaur A, Gwini SM, Shen J, Narayan O, et al. Comparison of ambulatory blood pressure between patients with primary aldosteronism and other forms of hypertension. Clin Endocrinol (Oxf). 2021;94:353–60.

    Article  CAS  PubMed  Google Scholar 

  24. Azushima K, Tamura K, Haku S, Wakui H, Kanaoka T, Ohsawa M, et al. Effects of the oriental herbal medicine Bofu-tsusho-san in obesity hypertension: A multicenter, randomized, parallel-group controlled trial (ATH-D-14-01021.R2). Atherosclerosis 2015;240:297–304.

    Article  CAS  PubMed  Google Scholar 

  25. Yanagi M, Tamura K, Fujikawa T, Wakui H, Kanaoka T, Ohsawa M, et al. The angiotensin II type 1 receptor blocker olmesartan preferentially improves nocturnal hypertension and proteinuria in chronic kidney disease. Hypertens Res. 2013;36:262–9.

    Article  CAS  PubMed  Google Scholar 

  26. Tamura K, Tsurumi Y, Sakai M, Tanaka Y, Okano Y, Yamauchi J, et al. A possible relationship of nocturnal blood pressure variability with coronary artery disease in diabetic nephropathy. Clin Exp Hypertens. 2007;29:31–42.

    Article  CAS  PubMed  Google Scholar 

  27. Azushima K, Wakui H, Uneda K, Haku S, Kobayashi R, Ohki K, et al. Within-visit blood pressure variability and cardiovascular risk factors in hypertensive patients with non-dialysis chronic kidney disease. Clin Exp Hypertens. 2017;39:665–71.

    Article  PubMed  Google Scholar 

  28. Mitsuhashi H, Tamura K, Yamauchi J, Ozawa M, Yanagi M, Dejima T, et al. Effect of losartan on ambulatory short-term blood pressure variability and cardiovascular remodeling in hypertensive patients on hemodialysis. Atherosclerosis 2009;207:186–90.

    Article  CAS  PubMed  Google Scholar 

  29. Masuda S, Tamura K, Wakui H, Kanaoka T, Ohsawa M, Maeda A, et al. Effects of angiotensin II type 1 receptor blocker on ambulatory blood pressure variability in hypertensive patients with overt diabetic nephropathy. Hypertens Res. 2009;32:950–5.

    Article  CAS  PubMed  Google Scholar 

  30. Yanase T, Oki Y, Katabami T, Otsuki M, Kageyama K, Tanaka T, et al. New diagnostic criteria of adrenal subclinical Cushing’s syndrome: Opinion from the Japan Endocrine Society. Endocr J. 2018;65:383–93.

    Article  CAS  PubMed  Google Scholar 

  31. Naruse M, Katabami T, Shibata H, Sone M, Takahashi K, Tanabe A, et al. Japan Endocrine Society clinical practice guideline for the diagnosis and management of primary aldosteronism 2021. Endocr J. 2022;69:327–59.

    Article  PubMed  Google Scholar 

  32. Nanba AT, Nanba K, Byrd JB, Shields JJ, Giordano TJ, Miller BS, et al. Discordance between imaging and immunohistochemistry in unilateral primary aldosteronism. Clin Endocrinol (Oxf). 2017;87:665–72.

    Article  CAS  PubMed  Google Scholar 

  33. Young WF Jr. Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J Intern Med. 2019;285:126–48.

    Article  PubMed  Google Scholar 

  34. Zelinka T, Widimský J. Twenty-Four hour blood pressure profile in subjects with different subtypes of primary aldosteronism. Physiol Res. 2001;50:51–57.

    CAS  PubMed  Google Scholar 

  35. Takakuwa H, Shimizu K, Izumiya Y, Kato T, Nakaya I, Yokoyama H, et al. Dietary sodium restriction restores nocturnal reduction of blood pressure in patients with primary aldosteronism. Hypertens Res. 2002;25:737–42.

    Article  CAS  PubMed  Google Scholar 

  36. Bollag WB. Regulation of aldosterone synthesis and secretion. Compr Physiol. 2014;4:1017–55.

    Article  PubMed  Google Scholar 

  37. Kem DC, Weinberger MH, Higgins JR, Kramer NJ, Gomez-Sanchez C, Holland OB. Plasma aldosterone response to ACTH in primary aldosteronism and in patients with low renin hypertension. J Clin Endocrinol Metab. 1978;46:552–60.

    Article  CAS  PubMed  Google Scholar 

  38. Saruta T, Okuno T, Eguchi T, Nakamura R, Saito I, Kondo K, et al. Responses of aldosterone-producing adenomas to ACTH and angiotensins. Acta Endocrinol (Copenh). 1979;92:702–9.

    CAS  PubMed  Google Scholar 

  39. Rossi GP, Barisa M, Allolio B, Auchus RJ, Amar L, Cohen D, et al. The Adrenal Vein Sampling International Study (AVIS) for identifying the major subtypes of primary aldosteronism. J Clin Endocrinol Metab. 2012;97:1606–14.

    Article  CAS  PubMed  Google Scholar 

  40. Weinberger MH, Grim CE, Hollifield JW, Kem DC, Ganguly A, Kramer NJ, et al. Primary aldosteronism: diagnosis, localization, and treatment. Ann Intern Med. 1979;90:386–95.

    Article  CAS  PubMed  Google Scholar 

  41. Uzu T, Ishikawa K, Fujii T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation 1997;96:1859–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kimura G. Kidney and circadian blood pressure rhythm. Hypertension 2008;51:827–8.

    Article  CAS  PubMed  Google Scholar 

  43. Hannemann A, Wallaschofski H, Lüdemann J, Völzke H, Markus MR, Rettig R, et al. Plasma aldosterone levels and aldosterone-to-renin ratios are associated with endothelial dysfunction in young to middle-aged subjects. Atherosclerosis 2011;219:875–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gkaliagkousi E, Anyfanti P, Triantafyllou A, Gavriilaki E, Nikolaidou B, Lazaridis A, et al. Aldosterone as a mediator of microvascular and macrovascular damage in a population of normotensive to early-stage hypertensive individuals. J Am Soc Hypertens. 2018;12:50–57.

    Article  CAS  PubMed  Google Scholar 

  45. Park S, Kim JB, Shim CY, Ko YG, Choi D, Jang Y, et al. The influence of serum aldosterone and the aldosterone-renin ratio on pulse wave velocity in hypertensive patients. J Hypertens. 2007;25:1279–83.

    Article  CAS  PubMed  Google Scholar 

  46. Satoh M, Kikuya M, Hara A, Ohkubo T, Mori T, Metoki H, et al. Aldosterone-to-renin ratio and home blood pressure in subjects with higher and lower sodium intake: the Ohasama study. Hypertens Res. 2011;34:361–6.

    Article  CAS  PubMed  Google Scholar 

  47. Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflug Arch. 2015;467:565–76.

    Article  CAS  Google Scholar 

  48. Fallo F, Castellano I, Gomez-Sanchez CE, Rhayem Y, Pilon C, Vicennati V, et al. Histopathological and genetic characterization of aldosterone-producing adenomas with concurrent subclinical cortisol hypersecretion: a case series. Endocrine 2017;58:503–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mulatero P, Monticone S, Deinum J, Amar L, Prejbisz A, Zennaro MC, et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: A position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension. J Hypertens. 2020;38:1919–28.

    Article  CAS  PubMed  Google Scholar 

  50. Alnazer RM, Veldhuizen GP, Kroon AA, de Leeuw PW. The effect of medication on the aldosterone-to-renin ratio. A critical review of the literature. J Clin Hypertens (Greenwich). 2021;23:208–14.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Textcheck for editing and reviewing the English in this manuscript.

Funding

This work was supported by grants from the Yokohama Foundation for Advancement of Medical Science; Uehara Memorial Foundation; Japan Society for the Promotion of Science; Japan Kidney Association-Nippon Boehringer Ingelheim Joint Research Program; Japanese Association of Dialysis Physicians; Salt Science Research Foundation; Strategic Research Project of Yokohama City University; Japan Agency for Medical Research and Development (AMED); Translational Research Program; Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT) from AMED; Moriya Scholarship Foundation; Bayer Scholarship for Cardiovascular Research; and Mochida Memorial Foundation for Medical and Pharmaceutical Research.

Author information

Authors and Affiliations

Authors

Contributions

KA designed and conducted the research. KA, RM, TH, KK, HW, and KT wrote the manuscript. KA, RM, SS, RK, SK, TK, YT, and HW performed the research. KA, RM, SS, and TH analyzed the data. KT supervised the research. All authors approved the final manuscript.

Corresponding authors

Correspondence to Kengo Azushima or Hiromichi Wakui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, R., Azushima, K., Sunohara, S. et al. High plasma aldosterone concentration is associated with worse 24-h ambulatory blood pressure profile in patients with primary aldosteronism. Hypertens Res 46, 1995–2004 (2023). https://doi.org/10.1038/s41440-023-01325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01325-8

Keywords

This article is cited by

Search

Quick links