Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Brachial-ankle pulse wave velocity is a stronger predictor than blood pressure for atherosclerotic cardiovascular diseases and all-cause mortality: a cohort study

Abstract

Whether brachial-ankle pulse wave velocity (baPWV) is a better predictive indicator than blood pressure (BP) for atherosclerotic cardiovascular diseases (ASCVD) events and all-cause mortality in the general population has not yet been established. The current study included 47,659 participants from the Kailuan cohort in China, who underwent the baPWV test and were free of ASCVD, atrial fibrillation, and cancer at baseline. The hazard ratios (HRs) of ASCVD and all-cause mortality were evaluated using the Cox proportional hazards model. The predictive ability of baPWV, systolic BP (SBP), and diastolic BP (DBP) for ASCVD and all-cause mortality was evaluated using the area under the curve (AUC) and concordance index (C-index). Within the median follow-up period of 3.27 and 3.32 person-years, 885 ASCVD events and 259 deaths occurred, respectively. The HRs of ASCVD and all-cause mortality increased with the increase of baPWV, SBP, and DBP. When baPWV, SBP, and DBP were analyzed as continuous variables, the adjusted HRs were 1.29 (95% CI, 1.22–1.37), 1.28 (95% CI, 1.20–1.37), and 1.26 (95% CI, 1.17–1.34) for each standard deviation increase, respectively. The AUC and C-index for baPWV in predicting ASCVD and all-cause mortality were 0.744 and 0.750, respectively, while those for SBP were 0.697 and 0.620, those for DBP were 0.666 and 0.585. The AUC and C-index of baPWV were higher than those of SBP and DBP (P < 0.001). Therefore, baPWV is an independent predictor of ASCVD and all-cause mortality in the general Chinese population, and its predictive ability is superior to that of BP.

baPWV is a more ideal screening method for ASCVD in large-scale population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

Data availability

Data that support the findings of this study are available from the corresponding author upon reasonable request and approval.

References

  1. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016;387:251–72.

    Article  PubMed  Google Scholar 

  2. Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, et al. Rapid health transition in China, 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2013;381:1987–2015.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394:1145–58.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ma LY, Chen WW, Gao RL, Liu LS, Hu SS. China cardiovascular diseases report 2018: an updated summary. J Geriatr Cardiol. 2020;17:1–8.

    PubMed  PubMed Central  Google Scholar 

  5. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–59.

    Article  Google Scholar 

  6. Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12.

    Article  PubMed  Google Scholar 

  7. Viles-Gonzalez JF, Fuster V, Badimon JJ. Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences. Eur Heart J. 2004;25:1197–207.

    Article  CAS  PubMed  Google Scholar 

  8. Volgman AS, Palaniappan LS, Aggarwal NT, Gupta M, Khandelwal A, Krishnan AV, et al. Atherosclerotic Cardiovascular Disease in South Asians in the United States: Epidemiology, Risk Factors, and Treatments: A Scientific Statement From the American Heart Association. Circulation. 2018;138:e1–e34.

    Article  PubMed  Google Scholar 

  9. van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, Reneman RS, et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke 2001;32:454–60.

    Article  PubMed  Google Scholar 

  10. Mitchell GF, Powell JT. Arteriosclerosis: A Primer for “In Focus” Reviews on Arterial Stiffness. Arterioscler Thromb Vasc Biol. 2020;40:1025–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu S, Xu L, Wu M, Chen S, Wang Y, Tian Y. Association between triglyceride-glucose index and risk of arterial stiffness: a cohort study. Cardiovasc Diabetol. 2021;20:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng M, Zhang X, Chen S, Song Y, Zhao Q, Gao X, et al. Arterial Stiffness Preceding Diabetes: A Longitudinal Study. Circ Res. 2020;127:1491–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wu S, Jin C, Li S, Zheng X, Zhang X, Cui L, et al. Aging, Arterial Stiffness, and Blood Pressure Association in Chinese Adults. Hypertension. 2019;73:893–9.

    Article  CAS  PubMed  Google Scholar 

  14. Turin TC, Kita Y, Rumana N, Takashima N, Kadota A, Matsui K, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality in the general population: findings from the Takashima study, Japan. Hypertens Res. 2010;33:922–5.

    Article  PubMed  Google Scholar 

  15. Imanishi R, Seto S, Toda G, Yoshida M, Ohtsuru A, Koide Y, et al. High brachial-ankle pulse wave velocity is an independent predictor of the presence of coronary artery disease in men. Hypertens Res. 2004;27:71–78.

    Article  PubMed  Google Scholar 

  16. Kim J, Song TJ, Song D, Lee KJ, Kim EH, Lee HS, et al. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension. 2014;64:240–6.

    Article  CAS  PubMed  Google Scholar 

  17. Maeda Y, Inoguchi T, Etoh E, Kodama Y, Sasaki S, Sonoda N, et al. Brachial-ankle pulse wave velocity predicts all-cause mortality and cardiovascular events in patients with diabetes: the Kyushu Prevention Study of Atherosclerosis. Diabetes Care. 2014;37:2383–90.

    Article  CAS  PubMed  Google Scholar 

  18. Sheng CS, Li Y, Li LH, Huang QF, Zeng WF, Kang YY, et al. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese. Hypertension. 2014;64:1124–30.

    Article  CAS  PubMed  Google Scholar 

  19. Takashima N, Turin TC, Matsui K, Rumana N, Nakamura Y, Kadota A, et al. The relationship of brachial-ankle pulse wave velocity to future cardiovascular disease events in the general Japanese population: the Takashima Study. J Hum Hypertens. 2014;28:323–7.

    Article  CAS  PubMed  Google Scholar 

  20. Wright JD, Folsom AR, Coresh J, Sharrett AR, Couper D, Wagenknecht LE, et al. The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. J Am Coll Cardiol. 2021;77:2939–59.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Itoga NK, Tawfik DS, Lee CK, Maruyama S, Leeper NJ, Chang TI. Association of Blood Pressure Measurements With Peripheral Artery Disease Events. Circulation. 2018;138:1805–14.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Massmann A, Stemler J, Fries P, Kubale R, Kraushaar LE, Buecker A. Automated oscillometric blood pressure and pulse-wave acquisition for evaluation of vascular stiffness in atherosclerosis. Clin Res Cardiol. 2017;106:514–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Havenon A, Delic A, Yaghi S, Wong KH, Majersik JJ, Stulberg E, et al. Midlife Blood Pressure Variability and Risk of All-Cause Mortality and Cardiovascular Events During Extended Follow-up. Am J Hypertens. 2021;34:1269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Iwata S, Jin Z, Schwartz JE, Homma S, Elkind MS, Rundek T, et al. Relationship between ambulatory blood pressure and aortic arch atherosclerosis. Atherosclerosis. 2012;221:427–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, et al. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Safar ME. Arterial stiffness as a risk factor for clinical hypertension. Nat Rev Cardiol. 2018;15:97–105.

    Article  PubMed  Google Scholar 

  27. O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension. 2005;45:652–8.

    Article  PubMed  Google Scholar 

  28. Weisbrod RM, Shiang T, Al Sayah L, Fry JL, Bajpai S, Reinhart-King CA, et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension. 2013;62:1105–10.

    Article  CAS  PubMed  Google Scholar 

  29. Li W, Jin C, Vaidya A, Wu Y, Rexrode K, Zheng X, et al. Blood Pressure Trajectories and the Risk of Intracerebral Hemorrhage and Cerebral Infarction: A Prospective Study. Hypertension. 2017;70:508–14.

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Yuan Y, Zheng M, Pan A, Wang M, Zhao M, et al. Association of Age of Onset of Hypertension With Cardiovascular Diseases and Mortality. J Am Coll Cardiol. 2020;75:2921–30.

    Article  PubMed  Google Scholar 

  31. Li Y, Li Y, Gurol ME, Liu Y, Yang P, Shi J, et al. In utero exposure to the Great Chinese Famine and risk of intracerebral hemorrhage in midlife. Neurology. 2020;94:e1996–e2004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu S, Song Y, Chen S, Zheng M, Ma Y, Cui L, et al. Blood Pressure Classification of 2017 Associated With Cardiovascular Disease and Mortality in Young Chinese Adults. Hypertension. 2020;76:251–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zuo Y, Zheng D, Chen S, Yang X, Yan Y, Liu F, et al. Baseline and Cumulative Blood Pressure in Predicting the Occurrence of Cardiovascular Events. Front Cardiovasc Med. 2021;8:735679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao M, Song L, Sun L, Wang M, Wang C, Yao S, et al. Associations of Type 2 Diabetes Onset Age With Cardiovascular Disease and Mortality: The Kailuan Study. Diabetes Care. 2021 (e-pub ahead of print 2021/04/24; https://doi.org/10.2337/DC20-2375).

  35. Yu Y, Dong Z, Li Y, Zhang J, Yin S, Gao X, et al. The Cardiovascular and Cerebrovascular Health in North China From 2006 to 2011: Results From the KaiLuan Study. Front Cardiovasc Med. 2021;8:683416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo Y, Cui L, Ye P, Li J, Wu S, Luo Y. Change of Kidney Function Is Associated With All-Cause Mortality and Cardiovascular Diseases: Results From the Kailuan Study. J Am Heart Assoc. 2018;7:e010596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stroke-1989. Recommendations on stroke prevention, diagnosis, and therapy. Report of the WHO Task Force on Stroke and other Cerebrovascular Disorders. Stroke. 1989;20:1407–31.

    Article  Google Scholar 

  38. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. J Am Coll Cardiol. 2012;60:1581–98.

    Article  PubMed  Google Scholar 

  39. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994;90:583–612.

    Article  CAS  PubMed  Google Scholar 

  40. Jin C, Chen S, Vaidya A, Wu Y, Wu Z, Hu FB, et al. Longitudinal Change in Fasting Blood Glucose and Myocardial Infarction Risk in a Population Without Diabetes. Diabetes Care. 2017;40:1565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu S, Huang Z, Yang X, Zhou Y, Wang A, Chen L, et al. Prevalence of ideal cardiovascular health and its relationship with the 4-year cardiovascular events in a northern Chinese industrial city. Circ Cardiovasc Qual Outcomes. 2012;5:487–93.

    Article  PubMed  Google Scholar 

  42. Wang A, Chen S, Wang C, Zhou Y, Wu Y, Xing A, et al. Resting heart rate and risk of cardiovascular diseases and all-cause death: the Kailuan study. PLoS One. 2014;9:e110985.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang S, Li J, Shearer GC, Lichtenstein AH, Zheng X, Wu Y, et al. Longitudinal study of alcohol consumption and HDL concentrations: a community-based study. Am J Clin Nutr. 2017;105:905–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Verbakel JY, Steyerberg EW, Uno H, De Cock B, Wynants L, Collins GS, et al. ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. J Clin Epidemiol. 2020;126:207–16.

    Article  PubMed  Google Scholar 

  45. Janssens A, Martens FK. Reflection on modern methods: Revisiting the area under the ROC Curve. Int J Epidemiol. 2020;49:1397–403.

    Article  PubMed  Google Scholar 

  46. Ninomiya T, Kojima I, Doi Y, Fukuhara M, Hirakawa Y, Hata J, et al. Brachial-ankle pulse wave velocity predicts the development of cardiovascular disease in a general Japanese population: the Hisayama Study. J Hypertens. 2013;31:477–83. discussion 483.

    Article  CAS  PubMed  Google Scholar 

  47. Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension. 2017;69:1045–52.

    Article  CAS  PubMed  Google Scholar 

  48. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 2006;113:657–63.

    Article  PubMed  Google Scholar 

  49. Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev. 2017;97:1555–617.

    Article  CAS  PubMed  Google Scholar 

  50. Bencivenga L, De Souto Barreto P, Rolland Y, Hanon O, Vidal JS, Cestac P, et al. Blood pressure variability: A potential marker of aging. Ageing Res Rev. 2022;80:101677.

    Article  CAS  PubMed  Google Scholar 

  51. Kim S, Choi SY, Lee H, Ju Kim J, Eun Park H. Sex and Age Differences in the Impact of Metabolic Syndrome and Its Components including A Body Shape Index on Arterial Stiffness in the General Population. J Atheroscler Thromb. 2022;29:1774–90.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Miao R, Chen Z, Wang J, Yuan H, Li J, et al. Age-specific association between non-HDL-C and arterial stiffness in the Chinese population. Front Cardiovasc Med. 2022;9:981028.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236–41.

    Article  CAS  PubMed  Google Scholar 

  54. Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6.

    Article  PubMed  Google Scholar 

  55. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  56. Schnaubelt S, Oppenauer J, Tihanyi D, Mueller M, Maldonado-Gonzalez E, Zejnilovic S, et al. Arterial stiffness in acute COVID-19 and potential associations with clinical outcome. J Intern Med. 2021;290:437–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee CJ, Yoon M, Ha J, Oh J, Park S, Lee SH, et al. Comparison of the Association Between Arterial Stiffness Indices and Heart Failure in Patients With High Cardiovascular Risk: A Retrospective Study. Front Cardiovasc Med. 2021;8:782849.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tanaka H, Munakata M, Kawano Y, Ohishi M, Shoji T, Sugawara J, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J Hypertens. 2009;27:2022–7.

    Article  CAS  PubMed  Google Scholar 

  59. Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, Chikamori T, et al. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement-a survey of 12517 subjects. Atherosclerosis. 2003;166:303–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sugawara J, Tanaka H. Brachial-Ankle Pulse Wave Velocity: Myths, Misconceptions, and Realities. Pulse (Basel). 2015;3:106–13.

    Article  PubMed  Google Scholar 

  61. Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper MY, DeVan AE, Anton MA, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19:401–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Kailuan Study for their contributions and participants for their data.

Author information

Authors and Affiliations

Authors

Contributions

DKL, SLW, and YHT: designed and conducted the research; DKL and YPY: analyzed the data and wrote the paper; and all authors: critically revised the manuscript for any relevant intellectual content and read and approved the final manuscript.

Corresponding authors

Correspondence to Shouling Wu or Yaohua Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, D., Liu, R. et al. Brachial-ankle pulse wave velocity is a stronger predictor than blood pressure for atherosclerotic cardiovascular diseases and all-cause mortality: a cohort study. Hypertens Res 46, 2100–2112 (2023). https://doi.org/10.1038/s41440-023-01313-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01313-y

Keywords

This article is cited by

Search

Quick links