Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular disease and cancer: shared risk factors and mechanisms

Abstract

Cardiovascular disease (CVD) and cancer are among the leading causes of morbidity and mortality globally, and these conditions are increasingly recognized to be fundamentally interconnected. In this Review, we present the current epidemiological data for each of the modifiable risk factors shared by the two diseases, including hypertension, hyperlipidaemia, diabetes mellitus, obesity, smoking, diet, physical activity and the social determinants of health. We then review the epidemiological data demonstrating the increased risk of CVD in patients with cancer, as well as the increased risk of cancer in patients with CVD. We also discuss the shared mechanisms implicated in the development of these conditions, highlighting their inherent bidirectional relationship. We conclude with a perspective on future research directions for the field of cardio-oncology to advance the care of patients with CVD and cancer.

Key points

  • Cardiovascular disease (CVD) and cancer have a bidirectional relationship, with shared mechanisms and risk factors that predispose individuals to both disease states.

  • Shared modifiable risk factors for CVD and cancer include hypertension, diabetes mellitus, obesity, smoking, diet, physical activity and social determinants of health.

  • Patients with cancer are at increased risk of multiple CVD subtypes, as well as death from CVD, owing at least in part to the development of shared modifiable risk factors.

  • Patients with CVD are at increased risk of multiple cancer subtypes and cancer-related death, although variation exists among studies and among types of cancer.

  • Shared mechanisms underlying both CVD and cancer include chronic inflammation, oxidative stress, metabolic dysregulation, clonal haematopoiesis of indeterminate potential, microbial dysbiosis, hormonal effects and cell senescence.

  • Understanding the risk factors and mechanisms shared between CVD and cancer enables the prediction, prevention and treatment of both, which is necessary to advance the field of cardio-oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The bidirectional relationship between CVD and cancer.
Fig. 2: Shared mechanisms of CVD and cancer.

Similar content being viewed by others

References

  1. The Global Health Observatory. Global health estimates 2020: deaths by cause, age, sex, by country and by region. 2000-2019 (WHO, 2020).

  2. Bray, F. et al. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029–3030 (2021).

    Article  PubMed  Google Scholar 

  3. Meijers, R. A. & de Boer, R. A. Common risk factors for heart failure and cancer. Cardiovasc. Res. 115, 844–853 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Boer, R. A. et al. Cancer and heart disease: associations and relations. Eur. J. Heart Fail. 21, 1515–1525 (2019).

    Article  PubMed  Google Scholar 

  5. Koene, R. J. et al. Shared risk factors in cardiovascular disease and cancer. Circulation 133, 1104–1114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Stoltzfus, K. C. et al. Fatal heart disease among cancer patients. Nat. Commun. 11, 2020 (2011).

    Google Scholar 

  7. Battisti, N. M. L. et al. Prevalence of cardiovascular disease in patients with potentially curable malignancies: a national registry dataset analysis. JACC CardioOncol. 4, 238–253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Florido, R. et al. Cardiovascular disease risk among cancer survivors: the Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 80, 22–32 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paterson, D. I. et al. Incident cardiovascular disease among adults with cancer. JACC CardioOncol. 4, 85–94 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, X. et al. Ten-year cardiovascular risk among cancer survivors: the National Health and Nutrition Examination Survey. PLoS ONE 16, e0247919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aboumsallem, J. P., Moslehi, J. & de Boer, R. A. Reverse cardio-oncology: cancer development in patients with cardiovascular disease. J. Am. Heart Assoc. 9, e013754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bell, C. F. et al. Risk of cancer after diagnosis of cardiovascular disease. JACC CardioOncol. 5, 431–440 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chianca, M. et al. Bidirectional relationship between cancer and heart failure: insights on circulating biomarkers. Front. Cardiovasc. Med. 9, 936654 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayek, S. S. et al. Preparing the cardiovascular workforce to care for oncology patients: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 2226–2235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herrmann, J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat. Rev. Cardiol. 17, 474–502 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herrmann, J. Vascular toxic effects of cancer therapies. Nat. Rev. Cardiol. 17, 503–522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Omland, T., Heck, S. L. & Gulati, G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC CardioOncol. 4, 19–37 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tan, S. et al. Immune checkpoint inhibitor therapy in oncology. JACC CardioOncol. 4, 579–597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Quartermaine, C. et al. Cardiovascular toxicities of BTK inhibitors in chronic lymphocytic leukemia. JACC CardioOncol. 5, 570–590 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Glen, C. et al. Mechanistic and clinical overview cardiovascular toxicity of BRAF and MEK inhibitors: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 4, 1–18 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Parashar, S. et al. Cancer treatment-related cardiovascular toxicity in gynecologic malignancies. JACC CardioOncol. 5, 159–173 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Welty, N. E. & Gill, S. I. Cancer immunotherapy beyond checkpoint blockade. JACC CardioOncol. 4, 563–578 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Georgiopoulos, G. et al. Cardiovascular toxicity of proteasome inhibitors: underlying mechanisms and management strategies: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 5, 1–21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bergom, C. et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC CardioOncol. 3, 343–359 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Boer, R. A. et al. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 22, 2272–2289 (2020).

    Article  PubMed  Google Scholar 

  26. Karlstaedt, A., Moslehi, J. & de Boer, R. A. Cardio-onco-metabolism: metabolic remodelling in cardiovascular disease and cancer. Nat. Rev. Cardiol. 19, 414–425 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leiva, O. et al. Common pathophysiology in cancer, atrial fibrillation, atherosclerosis, and thrombosis: JACC: CardioOncology state-of-the-art review. JACC CardioOncol. 3, 619–634 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Cohen, J. B. et al. Hypertension in cancer patients and survivors. JACC CardioOncol. 1, 238–251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lewington, S. et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 360, 1903–1913 (2002).

    Article  PubMed  Google Scholar 

  31. Rahimi, K. et al. Pharmacological blood pressure lowering for primary and secondary prevention of cardiovascular disease across different levels of blood pressure: an individual participant-level data meta-analysis. Lancet 397, 1625–1636 (2021).

    Article  Google Scholar 

  32. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    Article  PubMed  Google Scholar 

  33. Seretis, A. et al. Association between blood pressure and risk of cancer development: a systematic review and meta-analysis of observational studies. Sci. Rep. 9, 8565 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harding, J. L. et al. Hypertension, antihypertensive treatment and cancer incidence and mortality: a pooled collaborative analysis of 12 Australian and New Zealand cohorts. J. Hypertens. 34, 149–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Han, H. et al. Hypertension and breast cancer risk: a systematic review and meta-analysis. Sci. Rep. 7, 44877 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nelson, R. H. Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care 40, 195–211 (2013).

    Article  PubMed  Google Scholar 

  37. Borén, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lewington, S. et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839 (2007).

    Article  PubMed  Google Scholar 

  39. Navarese, E. P. et al. Association between baseline LDL-C level and total and cardiovascular mortality after LDL-C lowering: a systematic review and meta-analysis. JAMA 319, 1566–1579 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yao, X. & Tian, Z. Dyslipidemia and colorectal cancer risk: a meta-analysis of prospective studies. Cancer Causes Control 26, 257–268 (2015).

    Article  PubMed  Google Scholar 

  41. Yuan, F. et al. Serum lipid profiles and cholesterol-lowering medication use in relation to subsequent risk of colorectal cancer in the UK Biobank cohort. Cancer Epidemiol. Biomark. Prev. 32, 524–530 (2023).

    Article  CAS  Google Scholar 

  42. Fang, Z., He, M. & Song, M. Serum lipid profiles and risk of colorectal cancer: a prospective cohort study in the UK Biobank. Br. J. Cancer 124, 663–670 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Tian, Y. et al. The association between serum lipids and colorectal neoplasm: a systemic review and meta-analysis. Public Health Nutr. 18, 3355–3370 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nouri, M. et al. Effect of serum lipid profile on the risk of breast cancer: systematic review and meta-analysis of 1,628,871 women. J. Clin. Med. 11, 4503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ni, H., Liu, H. & Gao, R. Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS ONE 10, e0142669 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nowak, C. & Ärnlöv, J. A Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat. Commun. 9, 3957 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ganjali, S. et al. HDL and cancer – causality still needs to be confirmed? Update 2020. Semin. Cancer Biol. 73, 169–177 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Pirro, M. et al. High density lipoprotein cholesterol and cancer: marker or causative? Prog. Lipid Res. 71, 54–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Powell-Wiley, T. M. et al. Obesity and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 143, e984–e1010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Csige, I. et al. The impact of obesity on the cardiovascular system. J. Diabetes Res. 2018, 3407306 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kim, M. S. et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 42, 3388–3403 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ 356, j477 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet 384, 755–765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Leon, B. M. & Maddox, T. M. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6, 1246–1258 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Einarson, T. R. et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 17, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Raghavan, S. et al. Diabetes mellitus-related all‐cause and cardiovascular mortality in a national cohort of adults. J. Am. Heart Assoc. 8, e011295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cai, X. et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ 370, m2297 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tsilidis, K. K. et al. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607 (2015).

    Article  PubMed  Google Scholar 

  60. Ling, S. et al. Association of type 2 diabetes with cancer: a meta-analysis with bias analysis for unmeasured confounding in 151 cohorts comprising 32 million people. Diabetes Care 43, 2313–2322 (2020).

    Article  PubMed  Google Scholar 

  61. Banks, E. et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 17, 128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pan, A. et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus. Circulation 132, 1795–1804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hackshaw, A. et al. Low cigarette consumption and risk of coronary heart disease and stroke: meta-analysis of 141 cohort studies in 55 study reports. BMJ 360, j5855 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Duncan, M. S. et al. Association of smoking cessation with subsequent risk of cardiovascular disease. JAMA 322, 642–650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gandini, S. et al. Tobacco smoking and cancer: a meta-analysis. Int. J. Cancer 122, 155–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Macacu, A. et al. Active and passive smoking and risk of breast cancer: a meta-analysis. Breast Cancer Res. Treat. 154, 213–224 (2015).

    Article  PubMed  Google Scholar 

  67. Duan, W. et al. Smoking and survival of breast cancer patients: a meta-analysis of cohort studies. Breast 33, 117–124 (2017).

    Article  PubMed  Google Scholar 

  68. Botteri, E. et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis. Am. J. Gastroenterol. 115, 1940–1949 (2020).

    Article  PubMed  Google Scholar 

  69. O’Keeffe, L. M. et al. Smoking as a risk factor for lung cancer in women and men: a systematic review and meta-analysis. BMJ Open 8, e021611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Larsson, S. C. & Burgess, S. Appraising the causal role of smoking in multiple diseases: a systematic review and meta-analysis of Mendelian randomization studies. EBioMedicine 82, 104154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao, J. et al. Alcohol consumption and mortality from coronary heart disease: an updated meta-analysis of cohort studies. J. Stud. Alcohol Drugs 78, 375–386 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Biddinger, K. J. et al. Association of habitual alcohol intake with risk of cardiovascular disease. JAMA Netw. Open 5, e223849 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Larsson, S. C. et al. Alcohol consumption and cardiovascular disease. Circ. Genom. Precis. Med. 13, e002814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yoo, J. E. et al. Association between changes in alcohol consumption and cancer risk. JAMA Netw. Open 5, e2228544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bagnardi, V. et al. Light alcohol drinking and cancer: a meta-analysis. Ann. Oncol. 24, 301–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Jin, M. et al. Alcohol drinking and all cancer mortality: a meta-analysis. Ann. Oncol. 24, 807–816 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Martínez-González, M. A., Gea, A. & Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 124, 779–798 (2019).

    Article  PubMed  Google Scholar 

  81. Estruch, R. et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Karam, G. et al. Comparison of seven popular structured dietary programmes and risk of mortality and major cardiovascular events in patients at increased cardiovascular risk: systematic review and network meta-analysis. BMJ 380, e072003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pant, A. et al. Primary prevention of cardiovascular disease in women with a Mediterranean diet: systematic review and meta-analysis. Heart 109, 1208–1215 (2023).

    Article  PubMed  Google Scholar 

  84. Rodríguez-Monforte, M., Flores-Mateo, G. & Sánchez, E. Dietary patterns and CVD: a systematic review and meta-analysis of observational studies. Br. J. Nutr. 114, 1341–1359 (2015).

    Article  PubMed  Google Scholar 

  85. Grosso, G. et al. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal? Crit. Rev. Food Sci. Nutr. 57, 3218–3232 (2017).

    Article  PubMed  Google Scholar 

  86. Miller, V. et al. Evaluation of the quality of evidence of the association of foods and nutrients with cardiovascular disease and diabetes: a systematic review. JAMA Netw. Open 5, e2146705 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bechthold, A. et al. Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 59, 1071–1090 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Gan, Z. H. et al. Association between plant-based dietary patterns and risk of cardiovascular disease: a systematic review and meta-analysis of prospective cohort studies. Nutrients 13, 3952 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Quek, J. et al. The association of plant-based diet with cardiovascular disease and mortality: a meta-analysis and systematic review of prospect cohort studies. Front. Cardiovasc. Med. 8, 756810 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim, H. et al. Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. J. Am. Heart Assoc. 8, e012865 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson, A. S. et al. Association of healthful plant-based diet adherence with risk of mortality and major chronic diseases among adults in the UK. JAMA Netw. Open 6, e234714 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schwingshackl, L. et al. Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis. Nutrients 9, 1063 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Morze, J. et al. An updated systematic review and meta-analysis on adherence to Mediterranean diet and risk of cancer. Eur. J. Nutr. 60, 1561–1586 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Kodama, S. et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA 301, 2024–2035 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Sattelmair, J. et al. Dose response between physical activity and risk of coronary heart disease. Circulation 124, 789–795 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li, J. & Siegrist, J. Physical activity and risk of cardiovascular disease – a meta-analysis of prospective cohort studies. Int. J. Env. Res. Public Health 9, 391–407 (2012).

    Article  Google Scholar 

  97. Wahid, A. et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta‐analysis. J. Am. Heart Assoc. 5, e002495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Blond, K. et al. Association of high amounts of physical activity with mortality risk: a systematic review and meta-analysis. Br. J. Sports Med. 54, 1195–1201 (2020).

    Article  PubMed  Google Scholar 

  99. Bailey, D. P. et al. Sitting time and risk of cardiovascular disease and diabetes: a systematic review and meta-analysis. Am. J. Prev. Med. 57, 408–416 (2019).

    Article  PubMed  Google Scholar 

  100. Gonzalez-Jaramillo, N. et al. Systematic review of physical activity trajectories and mortality in patients with coronary artery disease. J. Am. Coll. Cardiol. 79, 1690–1700 (2022).

    Article  PubMed  Google Scholar 

  101. Moore, S. C. et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern. Med. 176, 816–825 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  102. McTiernan, A. et al. Physical activity in cancer prevention and survival: a systematic review. Med. Sci. Sports Exerc. 51, 1252–1261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Friedenreich, C. M. et al. Physical activity and mortality in cancer survivors: a systematic review and meta-analysis. JNCI Cancer Spectr. 4, pkz080 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Brandt, E. J. et al. Assessing and addressing social determinants of cardiovascular health: JACC state-of-the-art review. J. Am. Coll. Cardiol. 81, 1368–1385 (2023).

    Article  PubMed  Google Scholar 

  105. Powell-Wiley, T. M. et al. Social determinants of cardiovascular disease. Circ. Res. 130, 782–799 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Arnett, D. K. et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Khan, S. S. et al. Development and validation of the American Heart Association’s PREVENT equations. Circulation 149, 430–449 (2024).

    Article  PubMed  Google Scholar 

  108. Howard, V. J. et al. The Reasons for Geographic and Racial Differences in Stroke study: objectives and design. Neuroepidemiology 25, 135–143 (2005).

    Article  PubMed  Google Scholar 

  109. Sterling, M. R. et al. Social determinants of health and 90‐day mortality after hospitalization for heart failure in the REGARDS study. J. Am. Heart Assoc. 9, e014836 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Safford, M. M. et al. Number of social determinants of health and fatal and nonfatal incident coronary heart disease in the REGARDS study. Circulation 143, 244–253 (2021).

    Article  PubMed  Google Scholar 

  111. Reshetnyak, E. et al. Impact of multiple social determinants of health on incident stroke. Stroke 51, 2445–2453 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pinheiro, L. C. et al. Social determinants of health and cancer mortality in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort study. Cancer 128, 122–130 (2022).

    Article  PubMed  Google Scholar 

  113. Ganatra, S. et al. Impact of social vulnerability on comorbid cancer and cardiovascular disease mortality in the United States. JACC CardioOncol. 4, 326–337 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tufano, A., Coppola, A. & Galderisi, M. The growing impact of cardiovascular oncology: epidemiology and pathophysiology. Semin. Thromb. Hemost. 47, 899–906 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Lenihan, D. J. & Cardinale, D. M. Late cardiac effects of cancer treatment. J. Clin. Oncol. 30, 3657–3664 (2012).

    Article  PubMed  Google Scholar 

  116. van Dorst, D. C. H. et al. Hypertension and prohypertensive antineoplastic therapies in cancer patients. Circ. Res. 128, 1040–1061 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Sturgeon, K. M. et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur. Heart J. 40, 3889–3897 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Yang, H. et al. The role of genetic predisposition in cardiovascular risk after cancer diagnosis: a matched cohort study of the UK Biobank. Br. J. Cancer 127, 1650–1659 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zaorsky, N. G. et al. Causes of death among cancer patients. Ann. Oncol. 28, 400–407 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Zullig, L. L. et al. Cardiometabolic comorbidities in cancer survivors. JACC CardioOncol. 4, 149–165 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sloten, T. V. et al. Association of midlife cardiovascular health and subsequent change in cardiovascular health with incident cancer. JACC CardioOncol. 5, 39–52 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yun, J. P. et al. Risk of atrial fibrillation according to cancer type. JACC CardioOncol. 3, 221–232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Raisi-Estabragh, Z. et al. Incident cardiovascular events and imaging phenotypes in UK Biobank participants with past cancer. Heart 109, 1007–1015 (2023).

    Article  PubMed  Google Scholar 

  124. Meacham, L. R. et al. Cardiovascular risk factors in adult survivors of pediatric cancer – a report from the Childhood Cancer Survivor study. Cancer Epidemiol. Biomark. Prev. 19, 170–181 (2010).

    Article  Google Scholar 

  125. Hasin, T. et al. Patients with heart failure have an increased risk of incident cancer. J. Am. Coll. Cardiol. 62, 881–886 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hasin, T. et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J. Am. Coll. Cardiol. 68, 265–271 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Banke, A. et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur. J. Heart Fail. 18, 260–266 (2016).

    Article  PubMed  Google Scholar 

  128. Suzuki, M. et al. Incidence of cancers in patients with atherosclerotic cardiovascular diseases. Int. J. Cardiol. Heart Vasc. 17, 11–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  129. Lau, E. S. et al. Cardiovascular risk factors are associated with future cancer. JACC CardioOncol. 3, 48–58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Meijers, W. C. et al. Heart failure stimulates tumor growth by circulating factors. Circulation 138, 678–691 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Carpeggiani, C. et al. Stress echocardiography positivity predicts cancer death. J. Am. Heart Assoc. 6, e007104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Selvaraj, S. et al. Lack of association between heart failure and incident cancer. J. Am. Coll. Cardiol. 71, 1501–1510 (2018).

    Article  PubMed  Google Scholar 

  133. Lam, P. H. et al. Temporal associations and outcomes of breast cancer and heart failure in postmenopausal women. JACC CardioOncol. 2, 567–577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Leedy, D. J. et al. The association between heart failure and incident cancer in women: an analysis of the Women’s Health Initiative. Eur. J. Heart Fail. 23, 1712–1721 (2021).

    Article  PubMed  Google Scholar 

  135. Libby, P. & Kobold, S. Inflammation: a common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc. Res. 115, 824–829 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mehdizadeh, M. et al. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat. Rev. Cardiol. 19, 250–264 (2022).

    Article  PubMed  Google Scholar 

  137. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer – role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 7, 131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat. Rev. Drug Discov. 20, 589–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Engelen, S. E. et al. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key regulators of metabolic disease progression. Cell Metab. 17, 873–882 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 6, 263 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, Inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Münzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Peoples, J. N. et al. Mitochondrial dysfunction and oxidative stress in heart disease. Exp. Mol. Med. 51, 1–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sack, M. N. et al. Basic biology of oxidative stress and the cardiovascular system. J. Am. Coll. Cardiol. 70, 196–211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hayes, J. D., Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer. Cancer Cell 38, 167–197 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Perillo, B. et al. ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52, 192–203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jaiswal, S. Clonal hematopoiesis and nonhematologic disorders. Blood 136, 1606–1614 (2020).

    PubMed  PubMed Central  Google Scholar 

  155. Yura, Y., Cochran, J. D. & Walsh, K. Therapy-related clonal hematopoiesis: a new link between cancer and cardiovascular disease. Heart Fail. Clin. 18, 349–359 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Marnell, C. S., Bick, A. & Natarajan, P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell. Cardiol. 161, 98–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Calvillo-Arguelles, O. et al. Connections between clonal hematopoiesis, cardiovascular disease, and cancer: a review. JAMA Cardiol. 4, 380–387 (2019).

    Article  PubMed  Google Scholar 

  158. Fuster, J. J. Clonal hematopoiesis and cardiovascular disease in cancer patients and survivors. Thromb. Res. 213, S107–S112 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Calvillo-Argüelles, O. et al. Cardiovascular disease among patients with AML and CHIP-related mutations. JACC CardioOncol. 4, 38–49 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Trøseid, M. et al. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine 52, 102649 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Masenga, S. K. et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J. Hum. Hypertens. 36, 952–959 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  PubMed  Google Scholar 

  167. Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chakaroun, R. M., Olsson, L. M. & Bäckhed, F. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nat. Rev. Cardiol. 20, 217–235 (2023).

    Article  PubMed  Google Scholar 

  169. Tang, W. H. W., Kitai, T. & Hazen, S. L. Gut microbiota in cardiovascular health and disease. Circ. Res. 120, 1183–1196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rahman, M. M. et al. Microbiome in cancer: role in carcinogenesis and impact in therapeutic strategies. Biomed. Pharmacother. 149, 112898 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Wong, C. C. & Yu, J. Gut microbiota in colorectal cancer development and therapy. Nat. Rev. Clin. Oncol. 20, 429–452 (2023).

    Article  PubMed  Google Scholar 

  172. Ağagündüz, D. et al. Understanding the role of the gut microbiome in gastrointestinal cancer: a review. Front. Pharmacol. 14, 1130562 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhao, L.-Y. et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 8, 201 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Avraham, S. et al. Early cardiac remodeling promotes tumor growth and metastasis. Circulation 142, 670–683 (2020).

    Article  CAS  PubMed  Google Scholar 

  176. Tani, T. et al. Heart failure post myocardial infarction promotes mammary tumor growth through the NGF-TRKA pathway. JACC CardioOncol. 6, 55–66 (2024).

    Article  PubMed  Google Scholar 

  177. Porporato, P. E. et al. Mitochondrial metabolism and cancer. Cell Res. 28, 265–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  178. Karlstaedt, A. et al. Cardio-oncology. JACC Basic Transl. Sci. 6, 705–718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Huang, W. et al. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wilcox, N. S. et al. Sex-specific cardiovascular risks of cancer and its therapies. Circ. Res. 130, 632–651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Okwuosa, T. M. et al. Impact of hormonal therapies for treatment of hormone-dependent cancers (breast and prostate) on the cardiovascular system: effects and modifications: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 14, e000082 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Noyd, D. H. et al. Cardiovascular risk factor disparities in adult survivors of childhood cancer compared with the general population. JACC CardioOncol. 5, 489–500 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  183. American Cancer Society. Cancer treatment & survivorship facts & figures 2022-2024 (American Cancer Society, 2022).

  184. Handy, C. E. et al. Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: together we are stronger. Circulation 138, 727–734 (2018).

    Article  PubMed  Google Scholar 

  185. Fradley, M. G. et al. Developing a clinical cardio-oncology program and the building blocks for success. JACC CardioOncol. 5, 707–710 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Liu, E. E. et al. Association of cardiometabolic disease with cancer in the community. JACC CardioOncol. 4, 69–81 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Salloum, F. N. et al. Priorities in cardio-oncology basic and translational science. JACC CardioOncol. 5, 715–731 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.B.R. is supported by T32 CA009679. B.K. is supported by NIH R01 HL148272, R01 HL152707, R21 HL157886, K24HL167127, and American Heart Association Strategically Focused Research Network Award in Cardio-Oncology Disparities 849569, 869105, 994801, 994804.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article and discussed its content. N.S.W., U.A., J.B.R., E.B. and B.K. wrote the manuscript and reviewed/edited it before submission.

Corresponding author

Correspondence to Bonnie Ky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Susan Dent, Avirup Guha, Nickolas Stabellini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilcox, N.S., Amit, U., Reibel, J.B. et al. Cardiovascular disease and cancer: shared risk factors and mechanisms. Nat Rev Cardiol (2024). https://doi.org/10.1038/s41569-024-01017-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-024-01017-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing