Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations of SGLT2 genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults

Abstract

Sodium-glucose cotransporter 2 (SGLT2) inhibitors lowers blood pressure (BP) and exert a salutary effect on the salt sensitivity of BP. This study aimed to examine the associations of SGLT2 genetic variants with salt sensitivity, longitudinal BP changes and the risk of incident hypertension in Baoji Salt-Sensitive Study. A total of 514 participants were recruited when the cohort was established in 2004, and 333 participants received a dietary intervention that consisted of a 3-day usual diet followed sequentially by a 7-day low-salt diet and a 7-day high-salt diet. The cohort was then followed up for 14 years to evaluate the longitudinal BP changes and development of hypertension. We found that SGLT2 SNP rs3813007 was significantly associated with the systolic BP (SBP) responses to the low-salt diet. Over the 14 years of follow-up, SNPs rs3116149 and rs3813008 were significantly associated with the longitudinal SBP changes, and SNPs rs3116149, rs3813008, rs3813007 in SGLT2 were significantly associated with incidence of hypertension. Furthermore, gene-based analyses revealed that SGLT2 was significantly associated with hypertension incidence. Our study suggests that SGLT2 genetic polymorphisms may be involved in salt sensitivity and development of hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment. Lancet Diabetes Endocrinol. 2014;2:634–47.

    Article  Google Scholar 

  2. Kunes J, Zicha J. The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res. 2009;58:S33–s42.

    Article  PubMed  Google Scholar 

  3. O’Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998;97:1766–72.

    Article  PubMed  Google Scholar 

  4. He FJ, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:632–47.

    Article  CAS  PubMed  Google Scholar 

  5. Elijovich F, Weinberger MH, Anderson CA, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: A scientific statement from the American heart association. Hypertension 2016;68:e7–e46.

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Zhong B, Liu Y, Wang C. Association between alpha-adducin gene polymorphism (Gly460Trp) and genetic predisposition to salt sensitivity: A meta-analysis. J Appl Genet. 2010;51:87–94.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Z, Qi H, Liu B, Liu K, Wu J, Cao H, et al. Genetic susceptibility to salt-sensitive hypertension in a Han Chinese population: A validation study of candidate genes. Hypertens Res. 2017;40:876–84.

    Article  CAS  PubMed  Google Scholar 

  8. Beeks E, Kessels AG, Kroon AA, van der Klauw MM, de Leeuw PW. Genetic predisposition to salt-sensitivity: A systematic review. J Hypertens. 2004;22:1243–9.

    Article  CAS  PubMed  Google Scholar 

  9. Díez-Sampedro A, Eskandari S, Wright EM, Hirayama BA. Na+-to-sugar stoichiometry of SGLT3. Am J Physiol Ren Physiol. 2001;280:F278–82.

    Article  Google Scholar 

  10. Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24:73–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res. 2019;42:1905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan N, Fujisawa Y, Kobara H, Masaki T, Nakano D, Rahman A, et al. Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease. Hypertens Res. 2020;43:492–99.

    Article  CAS  PubMed  Google Scholar 

  14. Wells RG, Mohandas TK, Hediger MA. Localization of the Na+/glucose cotransporter gene SGLT2 to human chromosome 16 close to the centromere. Genomics 1993;17:787–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yu L, Lv JC, Zhou XJ, Zhu L, Hou P, Zhang H. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients. Hum Genet. 2011;129:335–44.

    Article  CAS  PubMed  Google Scholar 

  16. Yu L, Hou P, Lv JC, Liu GP, Zhang H. A novel sodium-glucose co-transporter 2 gene (SGLT2) mutation contributes to the abnormal expression of SGLT2 in renal tissues in familial renal glucosuria. Int Urol Nephrol. 2014;46:2237–8.

    Article  CAS  PubMed  Google Scholar 

  17. Maliha G, Townsend RR. SGLT2 inhibitors: their potential reduction in blood pressure. J Am Soc Hypertens. 2015;9:48–53.

    Article  CAS  PubMed  Google Scholar 

  18. Kario K, Hoshide S, Okawara Y, Tomitani N, Yamauchi K, Ohbayashi H, et al. Effect of canagliflozin on nocturnal home blood pressure in Japanese patients with type 2 diabetes mellitus: The SHIFT-J study. J Clin Hypertens (Greenwich). 2018;20:1527–35.

    Article  CAS  PubMed  Google Scholar 

  19. Gu X, Gu D, He J, Rao DC, Hixson JE, Chen J, et al. Resequencing Epithelial Sodium Channel Genes Identifies Rare Variants Associated With Blood Pressure Salt-Sensitivity: The GenSalt Study. Am J Hypertens. 2018;31:205–11.

    Article  CAS  PubMed  Google Scholar 

  20. Carey RM, Schoeffel CD, Gildea JJ, Jones JE, McGrath HE, Gordon LN, et al. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter. Hypertension 2012;60:1359–66.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Chu C, Ren J, Mu JJ, Wang D, Liu FQ, et al. Genetic variants in renalase and blood pressure responses to dietary salt and potassium interventions: a family-based association study. Kidney Blood Press Res. 2014;39:497–506.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Zhou Q, Gao WH, Yan Y, Chu C, Chen C, et al. Association of plasma cyclooxygenase-2 levels and genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Hypertens. 2020;38:1745–54.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Jia H, Gao WH, Zou T, Yao S, Du MF, et al. Associations of plasma PAPP-A2 and genetic variations with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Hypertens. 2021;39:1817–25.

    Article  CAS  PubMed  Google Scholar 

  24. Zou T, Yao S, Du MF, Mu JJ, Chu C, Hu GL, et al. Associations of corin genetic polymorphisms with salt sensitivity, blood pressure changes, and hypertension incidence in Chinese adults. J Clin Hypertens (Greenwich). 2021;23:2115–23.

    Article  CAS  PubMed  Google Scholar 

  25. Joint Committee for Guideline Revision. 2018 Chinese Guidelines for prevention and treatment of hypertension-A report of the revision committee of chinese guidelines for prevention and treatment of hypertension. J Geriatr Cardiol. 2019;16:182–241.

    PubMed Central  Google Scholar 

  26. Barlassina C, Dal Fiume C, Lanzani C, Manunta P, Guffanti G, Ruello A, et al. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet. 2007;16:1630–8.

    Article  CAS  PubMed  Google Scholar 

  27. Franco M, Sanchez-Lozada LG, Bautista R, Johnson RJ, Rodriguez-Iturbe B. Pathophysiology of salt-sensitive hypertension: a new scope of an old problem. Blood Purif. 2008;26:45–8.

    Article  PubMed  Google Scholar 

  28. Kario K, Okada K, Kato M, Nishizawa M, Yoshida T, Asano T, et al. 24-Hour Blood Pressure-Lowering Effect of an SGLT-2 Inhibitor in Patients with Diabetes and Uncontrolled Nocturnal Hypertension: Results from the Randomized, Placebo-Controlled SACRA Study. Circulation 2018;139:2089–97.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferdinand KC, Izzo JL, Lee J, Meng L, George J, Salsali A, et al. Antihyperglycemic and Blood Pressure Effects of Empagliflozin in Black Patients With Type 2 Diabetes Mellitus and Hypertension. Circulation 2019;139:2098–109.

    Article  CAS  PubMed  Google Scholar 

  30. Papadopoulou E, Loutradis C, Tzatzagou G, Kotsa K, Zografou I, Minopoulou I, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39:749–58.

    Article  CAS  PubMed  Google Scholar 

  31. Ye N, Jardine MJ, Oshima M, Hockham C, Heerspink HJL, Agarwal R, et al. Blood Pressure Effects of Canagliflozin and Clinical Outcomes in Type 2 Diabetes and Chronic Kidney Disease: Insights From the CREDENCE Trial. Circulation 2021;143:1735–49.

    Article  CAS  PubMed  Google Scholar 

  32. Hojná S, Rauchová H, Malínská H, Marková I, Hüttl M, Papoušek F, et al. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed Pharmacother. 2021;144:112246.

    Article  PubMed  Google Scholar 

  33. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014;129:587–97.

    Article  CAS  PubMed  Google Scholar 

  34. Tikkanen I, Chilton R, Johansen OE. Potential role of sodium glucose cotransporter 2 inhibitors in the treatment of hypertension. Curr Opin Nephrol Hypertens. 2016;25:81–6.

    Article  CAS  PubMed  Google Scholar 

  35. Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97:1020–31.

    Article  CAS  PubMed  Google Scholar 

  36. Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharm. 2013;715:246–55.

    Article  CAS  Google Scholar 

  38. Nagata T, Fukuzawa T, Takeda M, Fukazawa M, Mori T, Nihei T, et al. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br J Pharm. 2013;170:519–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the grassroots health staff in Meixian Hospital of Traditional Chinese Medicine for providing administrative and technical support during the follow-up.

Funding

This work was supported by the National Natural Science Foundation of China No. 82070437, 81870319 (J-JM), 81600327 (YW) and 82070549 (HL), Natural Science Basic Research Program of Shanxi Province (2021JM-257, 2021JM-588), the Clinical Research Award of the First Affiliated Hospital of Xi’an Jiaotong University of China No. XJTU1AF-CRF-2019-004 (J-JM) and XJTU1AF-CRF-2022-002, XJTU1AF2021CRF-021 (YW), Basic-Clinical Integration Innovation Project in Medicine of Xi’an Jiaotong University (YXJLRH2022009), Institutional Foundation of the First Affiliated Hospital of Xi’an Jiaotong University No. 2022MS-36, 2021ZXY-14, Key R&D Projects in Shaanxi Province Grant No. 2023-ZDLSF-50; the Chinese Academy of Medical Sciences & Peking Union Medical College (2017-CXGC03-2) and International Joint Research Center for Cardiovascular Precision Medicine of Shaanxi Province (2020GHJD-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Jun Mu, John Chang or Yang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Bao, P., Yao, S. et al. Associations of SGLT2 genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. Hypertens Res 46, 1795–1803 (2023). https://doi.org/10.1038/s41440-023-01301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01301-2

Keywords

Search

Quick links