Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Association of blood pressure and hyperuricemia with proteinuria and reduced renal function in the general population

A Comment to this article was published on 20 April 2023

Abstract

This study aimed to investigate the effect of hyperuricemia (HU) on the association of systolic blood pressure (SBP) with the prevalence of proteinuria and low estimated glomerular filtration rate (eGFR) in the general population. This cross-sectional study enrolled 24,728 Japanese individuals (11,137 men and 13,591 women) who underwent health checkups in 2010. The prevalence of proteinuria and low eGFR (< 60 mL/min/1.73 m2) among participants classified according to serum uric acid levels and SBP was compared. HU was defined as serum uric acid levels higher than the 75th percentile in male and female participants (> 7.2 and > 5.4 mg/dL, respectively). The odds ratio (OR) for proteinuria increased with elevated SBP. This trend was significantly evident in participants with HU. Moreover, there was an interactive effect of SBP and HU on the prevalence of proteinuria in the male (Pfor interaction = 0.04) and female (Pfor interaction = 0.04) participants. Next, we evaluated the OR for low eGFR (< 60 mL/min/1.73 m2) with and without proteinuria based on the presence of HU. The multivariate analysis revealed that the OR for low eGFR with proteinuria increased with elevated SBP, but that for low eGFR without proteinuria decreased. These trends of OR tended to be prevalent among those with HU. The association between SBP and the prevalence of proteinuria was more pronounced in participants with HU. However, the association between SBP and decreased renal function with and without proteinuria might be different regardless of HU.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nishizawa H, Maeda N, Shimomura I. Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertens Res. 2022;45:635–40.

    Article  PubMed  Google Scholar 

  2. Iseki K, Oshiro S, Tozawa M, Iseki C, Ikemiya Y, Takishita S. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691–7.

    Article  CAS  PubMed  Google Scholar 

  3. Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS. Uric acid and incident kidney disease in the community. J Am Soc Nephrol. 2008;19:1204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takae K, Nagata M, Hata J, Mukai N, Hirakawa Y, Yoshida D, et al. Serum uric acid as a risk factor for chronic kidney disease in a Japanese community - The Hisayama study. Circ J. 2016;80:1857–62.

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki K, Konta T, Kudo K, Sato H, Ikeda A, Ichikawa K, et al. The association between serum uric acid and renal damage in a community-based population: the Takahata study. Clin Exp Nephrol. 2013;17:541–8.

    Article  CAS  PubMed  Google Scholar 

  6. Chang HY, Lee PH, Lei CC, Tung CW, Hsu YC, Huang TJ, et al. Hyperuricemia is an independent risk factor for new onset micro-albuminuria in a middle-aged and elderly population: A prospective cohort study in Taiwan. PLoS One. 2013;8:e61450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obermayr RP, Temml C, Gutjahr G, Knechtelsdorfer M, Oberbauer R, Klauser-Braun R. Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol. 2008;19:2407–13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Momoki K, Kataoka H, Moriyama T, Mochizuki T, Nitta K. Hyperuricemia as a predictive marker for progression of nephrosclerosis: Clinical assessment of prognostic factors in biopsy-proven Arterial/Arteriolar nephrosclerosis. J Atheroscler Thromb. 2017;24:630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohagura K, Kochi M, Miyagi T, Kinjyo T, Maehara Y, Nagahama K, et al. An association between uric acid levels and renal arteriolopathy in chronic kidney disease: A biopsy-based study. Hypertens Res. 2013;36:43–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hill GS, Heudes D, Jacquot C, Gauthier E, Bariéty J. Morphometric evidence for impairment of renal autoregulation in advanced essential hypertension. Kidney Int. 2006;69:823–31.

    Article  CAS  PubMed  Google Scholar 

  11. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med. 1998;339:1448–56.

    Article  CAS  PubMed  Google Scholar 

  12. Kohagura K, Kochi M, Zamami R, Ohya Y. Understanding the Complex Interaction Between Uric Acid and Hypertension. Am J Hypertens. 2020;33:822–4.

    Article  CAS  PubMed  Google Scholar 

  13. Tada K, Maeda T, Takahashi K, Ito K, Yasuno T, Funakoshi S, et al. Association between serum uric acid and new onset and progression of chronic kidney disease in a Japanese general population: Iki epidemiological study of atherosclerosis and chronic kidney disease. Clin Exp Nephrol. 2021;25:751–9.

    Article  CAS  PubMed  Google Scholar 

  14. Kohagura K, Kochi M, Miyagi T, Zamami R, Nagahama K, Yonemoto K, et al. Augmented association between blood pressure and proteinuria in hyperuricemic patients with non-nephrotic chronic kidney disease. 2017; Am J Hypertens. https://doi.org/10.1093/ajh/hpx166.

  15. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  16. Kashiwagi A, Kasuga M, Araki E, Oka Y, Hanafusa T, Ito H, et al. International clinical harmonization of glycated hemoglobin in Japan: From Japan Diabetes Society to National Glycohemoglobin Standardization Program values. J Diabetes Investig. 2012;3:39–40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y. et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res.2019;42:1235–481.

    Article  PubMed  Google Scholar 

  18. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713–35.

    Article  PubMed  Google Scholar 

  19. Woodward M. Epidemiology: Study Design and Data Analysis, Second Edition, Chapman & Hall/CRC, 2005.

  20. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol. 2002;282:F991–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: Implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553–62.

    Article  CAS  PubMed  Google Scholar 

  22. Tsioufis C, Dimitriadis K, Antoniadis D, Stefanadis C, Kallikazaros I. Inter-relationships of microalbuminuria with the other surrogates of the atherosclerotic cardiovascular disease in hypertensive subjects. Am J Hypertens. 2004;17:470–6.

    Article  CAS  PubMed  Google Scholar 

  23. Sánchez-Lozada LG, Tapia E, Avila-Casado C, Soto V, Franco M, Santamaría J, et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol Renal Physiol. 2002;283:F1105–1110.

    Article  PubMed  Google Scholar 

  24. Matsukuma Y, Masutani K, Tanaka S, Tsuchimoto A, Haruyama N, Okabe Y, et al. Association between serum uric acid level and renal arteriolar hyalinization in individuals without chronic kidney disease. Atherosclerosis. 2017;266:121–7.

    Article  CAS  PubMed  Google Scholar 

  25. Hill GS, Heudes D, Bariéty J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int. 2003;63:1027–36.

  26. Uedono H, Tsuda A, Ishimura E, Yasumoto M, Ichii M, Ochi A, et al. Relationship between serum uric acid levels and intrarenal hemodynamic parameters. Kidney Blood Press Res. 2015;40:315–22.

    Article  CAS  PubMed  Google Scholar 

  27. Zamami R, Kohagura K, Miyagi T, Kinjyo T, Shiota K, Ohya Y. Modification of the impact of hypertension on proteinuria by renal arteriolar hyalinosis in nonnephrotic chronic kidney disease. J Hypertens. 2016;34:2274–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kohagura K, Kochi M, Miyagi T, Zamami R, Nagahama K, Yonemoto K, et al. Augmented Association Between Blood Pressure and Proteinuria in Hyperuricemic Patients With Nonnephrotic Chronic Kidney Disease. Am J Hypertens. 2018;31:480–5.

    Article  CAS  PubMed  Google Scholar 

  29. Rule AD, Amer H, Cornell LD, Taler SJ, Cosio FG, Kremers WK, et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Intern Med. 2010;152:561–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Glassock RJ, Denic A, Rule. AD. The physiology and pathophysiology of the kidneys in aging. In: Brenner & Rector’s THE KIDNEY. 11 Ed. edited by Alan S. L. Yu, Glenn M. Chertow, Philip A. Marsden, Valerie Luyckx, Maarten W. Taal, Karl Skorecki Philadelphia, Elsevier, 2020, 710–30

  31. Freedman BI, Iskandar SS, Appel RG. The link between hypertension and nephrosclerosis. Am J Kidney Dis. 1995;25:207–21.

    Article  CAS  PubMed  Google Scholar 

  32. Messerli FH, Frohlich ED, Dreslinski GR, Suarez DH, Aristimuno GG. Serum uric acid in essential hypertension: An indicator of renal vascular involvement. Ann Intern Med. 1980;93:817–21.

    Article  CAS  PubMed  Google Scholar 

  33. Badve SV, Pascoe EM, Tiku A, Boudville N, Brown FG, Cass A, et al. Effects of allopurinol on the progression of chronic kidney disease. N Engl J Med. 2020;382:2504–13.

    Article  CAS  PubMed  Google Scholar 

  34. Doria A, Galecki AT, Spino C, Pop-Busui R, Cherney DZ, Lingvay I, et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N Engl J Med. 2020;382:2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wright JT, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002;288:2421–31.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Q, Wang Z, Zhou J, Chen Z, Li Y, Li S, et al. Effect of urate-lowering therapy on cardiovascular and kidney outcomes: A systematic review and meta-analysis. Clin J Am Soc Nephrol. 2020;15:1576–86.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tanaka H, Shiohira Y, Uezu Y, Higa A, Iseki K. Metabolic syndrome and chronic kidney disease in Okinawa, Japan. Kidney Int. 2006;69:369–74.

    Article  CAS  PubMed  Google Scholar 

  38. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quiñones Galvan A, Natali A, Baldi S, Frascerra S, Sanna G, Ciociaro D, et al. Effect of insulin on uric acid excretion in humans. Am J Physiol. 1995;268:E1–5.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Kinjyo K, the chairman of the Okinawa General Health Association, Haebaru, Japan, for providing the data for analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Kohagura.

Ethics declarations

Conflict of interest

Dr. Kohagura received personal fees for lecture from Teijin Pharma, Fuji Pharma, Sanwa Kagaku, Pfizer, and Mochida Pharma as well as obtained research funding from Teijin Pharma, outside the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochi, M., Kohagura, K., Oshiro, N. et al. Association of blood pressure and hyperuricemia with proteinuria and reduced renal function in the general population. Hypertens Res 46, 1662–1672 (2023). https://doi.org/10.1038/s41440-023-01250-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01250-w

Keywords

This article is cited by

Search

Quick links