Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common metabolic features of hypertension and type 2 diabetes

Abstract

Hypertension and type 2 diabetes frequently coexist, suggesting that the two diseases have common pathophysiological bases. This review describes the pathophysiological mechanisms of how type 2 diabetes is frequently associated with hypertension. Multiple common factors mediate between both diseases. Factors that induce both type 2 diabetes and hypertension include obesity-induced hyperinsulinemia, activation of the sympathetic nervous system, chronic inflammation, and changes in adipokines. Vascular complications resulting from type 2 diabetes and hypertension include endothelial dysfunction, vasodilation/constriction dysfunction of peripheral vessels and increased peripheral vascular resistance, arteriosclerosis, and chronic kidney disease. While many of these vascular complications are caused by hypertension, they also exacerbate the pathology of hypertension. In addition, insulin resistance in the vasculature blunts insulin-induced vasodilation and blood flow to skeletal muscle, which contributes to impaired glucose uptake to skeletal muscle and glucose intolerance. In obese and insulin-resistant patients, increase in the circulating fluid volume forms the major pathophysiology of elevated blood pressure. On the other hand, in non-obese and/or insulin-deficient patients, especially those in the middle- or later stages of diabetes, peripheral vascular resistance is the major pathophysiology of hypertension.

The relationship between various factors involved in the pathogenesis of type 2 diabetes and hypertension. It should be noted that all the factors shown in the figure are not necessarily present simultaneously in every patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iimura O. Insulin resistance and hypertension in Japanese. Hypertens Res. 1996;19:S1–8.

    Article  PubMed  Google Scholar 

  2. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension. 2001;37:1053–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am. 2014;43:103–22.

    Article  PubMed  Google Scholar 

  4. Das UN. Risk of type 2 diabetes mellitus in those with hypertension. Eur Heart J. 2008;29:952–3. author reply 953-4

    Article  PubMed  Google Scholar 

  5. Conen D, Ridker PM, Mora S, Buring JE, Glynn RJ. Blood pressure and risk of developing type 2 diabetes mellitus: the Women’s Health Study. Eur Heart J. 2007;28:2937–43.

    Article  PubMed  Google Scholar 

  6. Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107:391–7.

    Article  PubMed  Google Scholar 

  7. Shalimova A, Fadieienko G, Kolesnikova O, Isayeva A, Zlatkina V, Nemtsova V, et al. The role of genetic polymorphism in the formation of arterial hypertension, type 2 diabetes and their comorbidity. Curr Pharm Des. 2019;25:218–27.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng CF, Hsieh AR, Liang WM, Chen CC, Chen CH, Wu JY, et al. Genome-wide and candidate gene association analyses identify a 14-SNP combination for hypertension in patients with type 2 diabetes. Am J Hypertens. 2021;34:651–61.

    Article  CAS  PubMed  Google Scholar 

  9. Chung WK, Erion K, Florez JC, Hattersley AT, Hivert MF, Lee CG, et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43:1617–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu G, Jousilahti P, Tuomilehto J. Joint effects of history of hypertension at baseline and type 2 diabetes at baseline and during follow-up on the risk of coronary heart disease. Eur Heart J. 2007;28:3059–66.

    Article  PubMed  Google Scholar 

  11. Ninomiya T, Kubo M, Doi Y, Yonemoto K, Tanizaki Y, Rahman M, et al. Impact of metabolic syndrome on the development of cardiovascular disease in a general Japanese population: the Hisayama study. Stroke. 2007;38:2063–9.

    Article  CAS  PubMed  Google Scholar 

  12. Kushiro T, Kario K, Saito I, Teramukai S, Sato Y, Okuda Y, et al. Increased cardiovascular risk of treated white coat and masked hypertension in patients with diabetes and chronic kidney disease: the HONEST Study. Hypertens Res. 2017;40:87–95.

    Article  PubMed  Google Scholar 

  13. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46:S158–90.

    Article  CAS  PubMed  Google Scholar 

  14. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    Article  PubMed  Google Scholar 

  15. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care. 2023;46:S19–S40.

    Article  CAS  PubMed  Google Scholar 

  16. Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y, et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes. 2009;58:2574–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Investig. 2011;121:2094–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;208:501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takikawa A, Mahmood A, Nawaz A, Kado T, Okabe K, Yamamoto S, et al. HIF-1alpha in myeloid cells promotes adipose tissue remodeling toward insulin resistance. Diabetes. 2016;65:3649–59.

    Article  CAS  PubMed  Google Scholar 

  20. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neeland IJ, Ross R, Despres JP, Matsuzawa Y, Yamashita S, Shai I, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25.

    Article  PubMed  Google Scholar 

  22. Horii T, Fujita Y, Ishibashi C, Fukui K, Eguchi H, Kozawa J, et al., Islet inflammation is associated with pancreatic fatty infiltration and hyperglycemia in type 2 diabetes. BMJ Open Diabetes Res Care. 2020;8:e001508.

  23. Kozawa J, Shimomura I. Ectopic Fat Accumulation in Pancreas and Heart. J Clin Med. 2021;10:1326.

  24. Consultation, W.H.O.E. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.

    Article  Google Scholar 

  25. Takeuchi, M, Horikawa C, Hatta M, Takeda Y, Nedachi R, Ikeda I, et al., Secular trends in dietary intake over a 20-year period in people with type 2 diabetes in Japan: a comparative study of two nationwide registries; Japan Diabetes Complications Study (JDCS) and Japan Diabetes Clinical Data Management Study (JDDM). Nutrients. 2021;13:3428.

  26. Group, UPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  27. Xie J, Zhang X, Shao H, Jing S, Shan T, Shi Y, et al. An affordable approach to classifying type 2 diabetes based on fasting plasma glucose, TyG index and BMI: a retrospective cohort study of NHANES Data from 1988 to 2014. Diabetol Metab Syndr. 2022;14:113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukushima M, Usami M, Ikeda M, Nakai Y, Taniguchi A, Matsuura T, et al. Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism. 2004;53:831–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ohishi M. Hypertension with diabetes mellitus: physiology and pathology. Hypertens Res. 2018;41:389–93.

    Article  PubMed  Google Scholar 

  30. Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuchi M, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens Res. 2014;37:253–390.

    Article  PubMed  Google Scholar 

  31. Guyton AC, Manning RD Jr, Hall JE, Norman RA Jr, Young DB, Pan YJ. The pathogenic role of the kidney. J Cardiovasc Pharm. 1984;6:S151–61.

    Article  Google Scholar 

  32. Padilla J, Manrique-Acevedo C, Martinez-Lemus LA. New insights into mechanisms of endothelial insulin resistance in type 2 diabetes. Am J Physiol Heart Circ Physiol. 2022;323:H1231–8.

    Article  CAS  PubMed  Google Scholar 

  33. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94:1172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eringa EC, Stehouwer CD, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002;56:464–71.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–904.

    Article  PubMed  Google Scholar 

  37. Vollenweider L, Tappy L, Owlya R, Jéquier E, Nicod P, Scherrer U. Insulin-induced sympathetic activation and vasodilation in skeletal muscle. Effects of insulin resistance in lean subjects. Diabetes. 1995;44:641–5.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Investig. 1991;87:2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sweeney G, Klip A. Regulation of the Na+/K+-ATPase by insulin: why and how? Mol Cell Biochem. 1998;182:121–33.

    Article  CAS  PubMed  Google Scholar 

  40. Martinez FJ, Sancho-Rof JM. Epidemiology of high blood pressure and obesity. Drugs. 1993;46:160–4.

    Article  PubMed  Google Scholar 

  41. Seravalle G, Grassi G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press Cardiovasc Prev. 2016;23:175–9.

    Article  CAS  PubMed  Google Scholar 

  42. Love KM, Liu Z. DPP4 activity, hyperinsulinemia, and atherosclerosis. J Clin Endocrinol Metab. 2021;106:1553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Karlsson C, Lindell K, Ottosson M, Sjöström L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab. 1998;83:3925–9.

    CAS  PubMed  Google Scholar 

  44. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Chronic kidney disease and risk management: standards of care in diabetes-2023. Diabetes Care. 2023;46:S191–S202.

    Article  CAS  PubMed  Google Scholar 

  45. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study did not receive any financial support. IU has received honoraria from Sumitomo Dainippon Pharma as lecture fees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Usui.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usui, I. Common metabolic features of hypertension and type 2 diabetes. Hypertens Res 46, 1227–1233 (2023). https://doi.org/10.1038/s41440-023-01233-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41440-023-01233-x

Keywords

This article is cited by

Search

Quick links