Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention

Abstract

Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM). Secular changes in CVD outcomes have occurred over the past few decades, mainly due to a decline in the incidence of ischaemic heart disease. The onset of T2DM at a young age (<40 years), leading to a greater number of life-years lost, has also become increasingly common. Researchers are now looking beyond established risk factors in patients with T2DM towards the role of ectopic fat and, potentially, haemodynamic abnormalities in mediating important outcomes (such as heart failure). T2DM confers a wide spectrum of risk and is not necessarily a CVD risk equivalent, indicating the importance of risk assessment strategies (such as global risk scoring, consideration of risk-enhancing factors and assessment of subclinical atherosclerosis) to inform treatment. Data from epidemiological studies and clinical trials demonstrate that successful control of multiple risk factors can reduce the risk of CVD events by ≥50%; however, only ≤20% of patients achieve targets for risk factor reduction (plasma lipid levels, blood pressure, glycaemic control, body weight and non-smoking status). Improvements in composite risk factor control with lifestyle management (including a greater emphasis on weight loss interventions) and evidence-based generic and novel pharmacological therapies are therefore needed when the risk of CVD is high.

Key points

  • Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality in individuals with type 2 diabetes mellitus (T2DM).

  • Beyond glycaemia, evidence exists for the ‘upstream’ role of excess ectopic fat in mediating important CVD outcomes in individuals with T2DM.

  • Individuals with T2DM have a wide spectrum of risks that warrant assessment, including global risk scoring, consideration of risk-enhancing factors and, in subgroups, assessment of subclinical atherosclerosis to inform treatment.

  • Strategies to reduce the risk of CVD in individuals with T2DM include lifestyle management as the foundation, followed by pharmacological management to optimize plasma lipid levels, blood pressure and glycaemic control.

  • Epidemiological and clinical trial data show that the control of multiple risk factors is associated with ≥50% reductions in CVD events, but only ≤20% of individuals with T2DM achieve risk factor targets.

  • Improvements are needed to achieve composite risk factor control by comprehensive lifestyle and pharmacological approaches, including new evidence-based therapies for T2DM that reduce CVD outcomes by mechanisms not yet fully understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Number of individuals aged 20–79 years predicted to have type 1 or type 2 diabetes mellitus worldwide in 2021–2045.
Fig. 2: Association between central adiposity and T2DM.
Fig. 3: CHD event rates according to CAC score.
Fig. 4: Cardiovascular risk factor control in adults from the USA with type 2 diabetes mellitus.
Fig. 5: CVD and CHD event rates in patients with diabetes according to the number of risk factors for CVD controlled.

Similar content being viewed by others

References

  1. Blair, M. Diabetes mellitus review. Urol. Nurs. 36, 27–36 (2016).

    PubMed  Google Scholar 

  2. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care 43, S14–S31 (2020).

    Google Scholar 

  3. International Diabetes Federation. IDF Diabetes Atlas 10th Edition https://diabetesatlas.org/data/en/ (2021).

  4. Carracher, A. M., Marathe, P. H. & Close, K. L. International diabetes federation 2017. J. Diabetes 10, 353–356 (2018).

    PubMed  Google Scholar 

  5. Gregg, E. W., Sattar, N. & Ali, M. K. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 4, 537–547 (2016).

    PubMed  Google Scholar 

  6. Kalofoutis, C. et al. Type II diabetes mellitus and cardiovascular risk factors: current therapeutic approaches. Exp. Clin. Cardiol. 12, 17–28 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chawla, A., Chawla, R. & Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J. Endocrinol. Metab. 2, 546–551 (2016).

    Google Scholar 

  8. Malik, S. et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation 110, 1245–1250 (2004).

    PubMed  Google Scholar 

  9. Shah, A. D. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 3, 105–113 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215 (2010).

    Google Scholar 

  11. Coles, B. et al. Cardiovascular events and mortality in people with and without type 2 diabetes: An observational study in a contemporary multi-ethnic population. J. Diabetes Investig. 12, 1175–1182 (2021).

    PubMed  Google Scholar 

  12. Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The Framingham study. J. Am. Med. Assoc. 241, 2035–2038 (1979).

    CAS  Google Scholar 

  13. Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364, 937–952 (2004).

    PubMed  Google Scholar 

  14. de Jong, M., Woodward, M. & Peters, S. A. E. Diabetes, glycated hemoglobin, and the risk of myocardial infarction in women and men: a prospective cohort study of the UK Biobank. Diabetes Care 43, 2050–2059 (2020).

    PubMed  Google Scholar 

  15. Liu, L., Simon, B., Shi, J., Mallhi, A. K. & Eisen, H. J. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: evidence on health outcomes and antidiabetic treatment in United States adults. World J. Diabetes 7, 449–461 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Malmborg, M. et al. Does type 2 diabetes confer higher relative rates of cardiovascular events in women compared with men? Eur. Heart J. 41, 1346–1353 (2020).

    PubMed  Google Scholar 

  17. Suh, D. C., Choi, I. S., Plauschinat, C., Kwon, J. & Baron, M. Impact of comorbid conditions and race/ethnicity on glycemic control among the US population with type 2 diabetes, 1988–1994 to 1999–2004. J. Diabetes Complicat. 24, 382–391 (2010).

    Google Scholar 

  18. World Health Organization. Obesity and Overweight https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2021).

  19. Bhupathiraju, S. N. & Hu, F. B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ. Res. 118, 1723–1735 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor, R., Al-Mrabeh, A. & Sattar, N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol. 7, 726–736 (2019).

    CAS  PubMed  Google Scholar 

  21. Després, J. P. et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 28, 1039–1049 (2008).

    PubMed  Google Scholar 

  22. Huang, L. H., Liao, Y. L. & Hsu, C. H. Waist circumference is a better predictor than body mass index of insulin resistance in type 2 diabetes. Obes. Res. Clin. Pract. 6, e263–e346 (2012).

    PubMed  Google Scholar 

  23. Hajian-Tilaki, K. & Heidari, B. Is waist circumference a better predictor of diabetes than body mass index or waist-to-height ratio in Iranian adults? Int. J. Prev. Med. 6, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Peters, S. A. E., Bots, S. H. & Woodward, M. Sex differences in the association between measures of general and central adiposity and the risk of myocardial infarction: results from the UK biobank. J. Am. Heart Assoc. 7, e008507 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Martín-Timón, I., Sevillano-Collantes, C., Segura-Galindo, A. & Del Cañizo-Gómez, F. J. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J. Diabetes 5, 444–470 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Sone, H. et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J. Clin. Endocrinol. Metab. 96, 3448–3456 (2011).

    CAS  PubMed  Google Scholar 

  27. Fan, W., Philip, S., Granowitz, C., Toth, P. P. & Wong, N. D. Residual hypertriglyceridemia and estimated atherosclerotic cardiovascular disease risk by statin use in US adults with diabetes: National Health and Nutrition Examination Survey 2007–2014. Diabetes Care 42, 2307–2314 (2019).

    PubMed  Google Scholar 

  28. Katakami, N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J. Atheroscler. Thromb. 25, 27–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rizvi, A. A. Addressing hypertension in the patient with type 2 diabetes mellitus: pathogenesis, goals, and therapeutic approach. Eur. Med. J. Diabetes 5, 84–92 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Song, Y. et al. Increasing trend of diabetes combined with hypertension or hypercholesterolemia: NHANES data analysis 1999–2012. Sci. Rep. 6, 36093 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Long, A. N. & Dagogo-Jack, S. Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J. Clin. Hypertens. 13, 244–251 (2011).

    Google Scholar 

  32. Li, M. et al. Individual and combined associations of modifiable lifestyle and metabolic health status with new-onset diabetes and major cardiovascular events: the China cardiometabolic disease and cancer cohort (4C) study. Diabetes Care 43, 1929–1936 (2020).

    PubMed  Google Scholar 

  33. Zhang, Y. et al. Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Diabetologia 63, 21–33 (2020).

    PubMed  Google Scholar 

  34. Patterson, R. et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur. J. Epidemiol. 33, 811–829 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Schwab, U., Reynolds, A. N., Sallinen, T., Rivellese, A. A. & Riserus, U. Dietary fat intakes and cardiovascular disease risk in adults with type 2 diabetes: a systematic review and meta-analysis. Eur. J. Nutr. 60, 3355–3363 (2021).

    CAS  PubMed  Google Scholar 

  36. Hirahatake, K. M. et al. Diet quality and cardiovascular disease risk in postmenopausal women with type 2 diabetes mellitus: the women’s health initiative. J. Am. Heart Assoc. 8, e013249 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Hirahatake, K. M. et al. Cumulative intake of artificially sweetened and sugar-sweetened beverages and risk of incident type 2 diabetes in young adults: the coronary artery risk development in young adults (CARDIA) study. Am. J. Clin. Nutr. 110, 733–741 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Micha, R. et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. J. Am. Med. Assoc. 317, 912–924 (2017).

    Google Scholar 

  39. Han, T. S. & Lean, M. E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 5, 2048004016633371 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Welsh, C. et al. Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK biobank. Diabetes Care 43, 440–445 (2020).

    CAS  PubMed  Google Scholar 

  41. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, X. et al. Contributions of obesity to kidney health and disease: insights from Mendelian randomization and the human kidney transcriptomics. Cardiovasc. Res. 118, 3151–3161 (2022).

    CAS  PubMed  Google Scholar 

  43. Yudkin, J. S., Eringa, E. & Stehouwer, C. D. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365, 1817–1820 (2005).

    PubMed  Google Scholar 

  44. Borlaug, B. A. et al. Obesity and heart failure with preserved ejection fraction: new insights and pathophysiologic targets. Cardiovasc. Res. 118, 3434–3450 (2023).

    PubMed  Google Scholar 

  45. Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

    PubMed  Google Scholar 

  46. Leslie, W. S. et al. Antihypertensive medication needs and blood pressure control with weight loss in the diabetes remission clinical trial (DiRECT). Diabetologia 64, 1927–1938 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Case, C. C. et al. Impact of weight loss on the metabolic syndrome. Diabetes Obes. Metab. 4, 407–414 (2002).

    CAS  PubMed  Google Scholar 

  48. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    CAS  PubMed  Google Scholar 

  49. Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    CAS  PubMed  Google Scholar 

  50. Booth, G. L., Kapral, M. K., Fung, K. & Tu, J. V. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet 368, 29–36 (2006).

    PubMed  Google Scholar 

  51. Mingrone, G. et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 397, 293–304 (2021).

    PubMed  Google Scholar 

  52. Sattar, N., Deanfield, J. & Delles, C. Impact of intentional weight loss in cardiometabolic disease: what we know about timing of benefits on differing outcomes. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvac186 (2023).

    Article  PubMed  Google Scholar 

  53. Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    CAS  PubMed  Google Scholar 

  54. Bulugahapitiya, U., Siyambalapitiya, S., Sithole, J. & Idris, I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet. Med. 26, 142–148 (2009).

    CAS  PubMed  Google Scholar 

  55. Evans, J. M., Wang, J. & Morris, A. D. Comparison of cardiovascular risk between patients with type 2 diabetes and those who had had a myocardial infarction: cross sectional and cohort studies. Br. Med. J. 324, 939–942 (2002).

    Google Scholar 

  56. Lee, C. D. et al. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. Circulation 109, 855 (2004).

    PubMed  Google Scholar 

  57. Rana, J. S., Liu, J. Y., Moffet, H. H., Jaffe, M. & Karter, A. J. Diabetes and prior coronary heart disease are not necessarily risk equivalent for future coronary heart disease events. J. Gen. Intern. Med. 31, 387–393 (2016).

    PubMed  Google Scholar 

  58. Zhao, Y. et al. Identification and predictors for cardiovascular disease risk equivalents among adults with diabetes mellitus. Diabetes Care 44, 2411–2418 (2021).

    CAS  Google Scholar 

  59. Wong, N. D. et al. Global cardiovascular disease risk assessment in United States adults with diabetes. Diab. Vasc. Dis. Res. 9, 146–152 (2012).

    PubMed  Google Scholar 

  60. Arnett, D. K. et al. ACC/AHA Guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140, e596–e646 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. Visseren, F. L. J. et al. ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. J. Prev. Cardiol. 29, 5–115 (2022).

    PubMed  Google Scholar 

  62. Buchan, T. A. et al. Predictive models for cardiovascular and kidney outcomes in patients with type 2 diabetes: systematic review and meta-analyses. Heart 107, 1962–1973 (2021).

    PubMed  Google Scholar 

  63. Chowdhury, M. Z. I., Yeasmin, F., Rabi, D. M., Ronksley, P. E. & Turin, T. C. Prognostic tools for cardiovascular disease in patients with type 2 diabetes: a systematic review and meta-analysis of C-statistics. J. Diabetes Complicat. 33, 98–111 (2019).

    Google Scholar 

  64. Stevens, R. J. et al. The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin. Sci. 101, 671–679 (2001).

    CAS  Google Scholar 

  65. Kothari, V. et al. UKPDS 60: risk of stroke in type 2 diabetes estimated by the UK prospective diabetes study risk engine. Stroke 33, 1776–1781 (2002).

    PubMed  Google Scholar 

  66. Yeboah, J. et al. Development of a new diabetes risk prediction tool for incident coronary heart disease events: the Multi-Ethnic Study of Atherosclerosis and the Heinz Nixdorf Recall Study. Atherosclerosis 236, 411–417 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cosentino, F. et al. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 41, 255–323 (2020).

    PubMed  Google Scholar 

  68. van der Leeuw, J. et al. The validation of cardiovascular risk scores for patients with type 2 diabetes mellitus. Heart 101, 222–229 (2015).

    PubMed  Google Scholar 

  69. Read, S. H. et al. Performance of cardiovascular disease risk scores in people diagnosed with type 2 diabetes: external validation using data from the National Scottish Diabetes Register. Diabetes Care 41, 2010–2018 (2018).

    PubMed  Google Scholar 

  70. Segar, M. W. et al. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 42, 2298–2306 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Yang, P., Zhao, Y. & Wong, N. D. Development of a risk score for atrial fibrillation in adults with diabetes mellitus (from the ACCORD Study). Am. J. Cardiol. 125, 1638–1643 (2020).

    CAS  PubMed  Google Scholar 

  72. Slieker, R. C. et al. Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study. Br. Med. J. 374, n2134 (2021).

    Google Scholar 

  73. Beulens, J. W. J. et al. Prognostic models for predicting the risk of foot ulcer or amputation in people with type 2 diabetes: a systematic review and external validation study. Diabetologia 64, 1550–1562 (2021).

    PubMed  PubMed Central  Google Scholar 

  74. van der Heijden, A. A. et al. Prediction models for development of retinopathy in people with type 2 diabetes: systematic review and external validation in a Dutch primary care setting. Diabetologia 63, 1110–1119 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Grundy, S. M. et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143 (2019).

    PubMed  Google Scholar 

  76. Kuller, L. H. et al. Diabetes mellitus: subclinical cardiovascular disease and risk of incident cardiovascular disease and all-cause mortality. Arterioscler. Thromb. Vasc. Biol. 20, 823–829 (2000).

    CAS  PubMed  Google Scholar 

  77. Brohall, G., Oden, A. & Fagerberg, B. Carotid artery intima-media thickness in patients with type 2 diabetes mellitus and impaired glucose tolerance: a systematic review. Diabet. Med. 23, 609 (2006).

    CAS  PubMed  Google Scholar 

  78. Alves-Cabratosa, L. et al. Levels of ankle-brachial index and the risk of diabetes mellitus complications. BMJ Open Diabetes Res. Care 8, e000977 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Cardoso, C. R. L. et al. Prognostic impact of the ankle-brachial index on the development of micro- and macrovascular complications in individuals with type 2 diabetes: the Rio de Janeiro Type 2 Diabetes Cohort Study. Diabetologia 61, 2266–2276 (2018).

    PubMed  Google Scholar 

  80. Den Ruijter, H. M. et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. J. Am. Med. Assoc. 308, 796–803 (2012).

    Google Scholar 

  81. Malik, S. et al. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the Multi-Ethnic Study of Atherosclerosis. Diabetes Care 34, 2285–2290 (2011).

    PubMed  PubMed Central  Google Scholar 

  82. Nambi, V. et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J. Am. Coll. Cardiol. 55, 1600–1607 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wong, N. D. et al. The metabolic syndrome, diabetes, and subclinical atherosclerosis assessed by coronary calcium. J. Am. Coll. Cardiol. 41, 1547–1553 (2003).

    CAS  PubMed  Google Scholar 

  84. Malik, S. et al. Coronary artery calcium score for long-term risk classification in individuals with type 2 diabetes and metabolic syndrome from the multi-ethnic study of atherosclerosis. JAMA Cardiol. 2, 1332–1340 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Wong, N. D. et al. Sex differences in coronary artery calcium and mortality from coronary heart disease, cardiovascular disease, and all causes in adults with diabetes: the Coronary Calcium Consortium. Diabetes Care 43, 2597–2606 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wong, N. D. et al. Metabolic syndrome, diabetes, and incidence and progression of coronary calcium: the Multiethnic Study of Atherosclerosis study. JACC Cardiovasc. Imaging 5, 358 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Chen, K. et al. Independent associations between metabolic syndrome, diabetes mellitus and atherosclerosis: observations from the Dallas Heart study. Diab. Vasc. Dis. Res. 5, 96 (2008).

    PubMed  Google Scholar 

  88. Sow, M. A. et al. Prevalence, determinants and prognostic value of high coronary artery calcium score in asymptomatic patients with diabetes: a systematic review and meta-analysis. J. Diabetes Complicat. 36, 108237 (2022).

    CAS  Google Scholar 

  89. Kramer, C. K. et al. Coronary artery calcium score prediction of all-cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysis. Br. Med. J. 346, f1654 (2013).

    Google Scholar 

  90. Knuuti, J. et al. ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41, 407–477 (2020).

    PubMed  Google Scholar 

  91. Greenland, P. et al. ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122, 2748–2764 (2010).

    PubMed  Google Scholar 

  92. Rana, J. S. et al. Improved cardiovascular risk factors control associated with a large-scale population management program among diabetes patients. Am. J. Med. 131, 661–668 (2018).

    PubMed  Google Scholar 

  93. Fan, W. et al. Composite cardiovascular risk factor target achievement and its predictors in US adults with diabetes: the Diabetes Collaborative Registry. Diabetes Obes. Metab. 21, 1121–1127 (2019).

    CAS  PubMed  Google Scholar 

  94. Andary, R., Fan, W. & Wong, N. D. Control of cardiovascular risk factors among US adults with type 2 diabetes with and without cardiovascular disease. Am. J. Cardiol. 124, 522–527 (2019).

    PubMed  Google Scholar 

  95. El Sayed, N. A. et al. Cardiovascular disease and risk management: standards of care in diabetes–2023. Diabetes Care 46, S158–S190 (2023).

    CAS  PubMed  Google Scholar 

  96. Wong, N. D. et al. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson heart study. Diabetes Care 39, 668–676 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright, A. K. et al. Risk factor control and cardiovascular event risk in people with type 2 diabetes in primary and secondary prevention settings. Circulation 142, 1925–1936 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wong, N. D., Patao, C., Malik, S. & Iloeje, U. Preventable coronary heart disease events from control of cardiovascular risk factors in US adults with diabetes (projections from utilizing the UKPDS risk engine). Am. J. Cardiol. 113, 1356–1361 (2014).

    PubMed  Google Scholar 

  99. Chaitman, B. R. et al. The bypass angioplasty revascularization investigation 2 diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation 120, 2529–2540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gaede, P., Lund-Andersen, H., Parving, H. H. & Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 358, 580–591 (2008).

    CAS  PubMed  Google Scholar 

  101. Vaag, A. A. Glycemic control and prevention of microvascular and macrovascular disease in the Steno 2 study. Endocr. Pract. 12, 89–92 (2006).

    PubMed  Google Scholar 

  102. Ueki, K. et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 5, 951–964 (2017).

    PubMed  Google Scholar 

  103. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 45, 2753–2786 (2022).

    CAS  PubMed  Google Scholar 

  104. McGuire, D. K. et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 6, 148–158 (2021).

    PubMed  Google Scholar 

  105. Sattar, N. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 9, 653–662 (2021).

    CAS  PubMed  Google Scholar 

  106. Vaduganathan, M. et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400, 757–767 (2022).

    CAS  PubMed  Google Scholar 

  107. Packer, M. & McMurray, J. J. V. Rapid evidence-based sequencing of foundational drugs for heart failure and a reduced ejection fraction. Eur. J. Heart Fail. 23, 882–894 (2021).

    CAS  PubMed  Google Scholar 

  108. Mark, P. B. & Sattar, N. Implementation, not hesitation, for SGLT2 inhibition as foundational therapy for chronic kidney disease. Lancet 400, 1745–1747 (2022).

    CAS  PubMed  Google Scholar 

  109. National Institute for Health and Care Excellence. Type 2 Diabetes in Adults: Choosing Medicines https://www.nice.org.uk/guidance/ng28/resources/visual-summary-full-version-choosing-medicines-for-firstline-and-further-treatment-pdf-10956472093 (2022).

  110. Verma, S. & McMurray, J. J. V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 61, 2108–2117 (2018).

    CAS  PubMed  Google Scholar 

  111. Packer, M. Critical reanalysis of the mechanisms underlying the cardiorenal benefits of SGLT2 inhibitors and reaffirmation of the nutrient deprivation signaling/autophagy hypothesis. Circulation 146, 1383–1405 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT03574597 (2023).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05556512 (2023).

  114. Jesuthasan, A. et al. Sex differences in intraorgan fat levels and hepatic lipid metabolism: implications for cardiovascular health and remission of type 2 diabetes after dietary weight loss. Diabetologia 65, 226–233 (2022).

    CAS  PubMed  Google Scholar 

  115. Sattar, N. Type 2 diabetes-related sex differences in cardiovascular risk: reasons, ramifications, and clinical realities. Eur. Heart J. 41, 1354–1356 (2020).

    PubMed  Google Scholar 

  116. Wright, A. K. et al. Age-, sex- and ethnicity-related differences in body weight, blood pressure, HbA1c and lipid levels at the diagnosis of type 2 diabetes relative to people without diabetes. Diabetologia 63, 1542–1553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Sattar, N. et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation 139, 2228–2237 (2019).

    PubMed  Google Scholar 

  118. Davies, M. J. et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 65, 1925–1966 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sattar, N. & Gill, J. M. Type 2 diabetes in migrant south Asians: mechanisms, mitigation, and management. Lancet Diabetes Endocrinol. 3, 1004–1016 (2015).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding authors

Correspondence to Nathan D. Wong or Naveed Sattar.

Ethics declarations

Competing interests

N.D.W. receives research support through his institution from Eli Lilly, Novartis and Novo Nordisk. N.S. has consulted for or received speaker honoraria from Abbott Laboratories, Afimmune, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Hanmi Pharmaceuticals, Janssen, Merck Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, Roche Diagnostics and Sanofi. N.S. has also received grants funding, paid to his University, from AstraZeneca, Boehringer Ingelheim, Novartis and Roche Diagnostics.

Peer review

Peer review information

Nature Reviews Cardiology thanks Joline Beulens, Heinz Drexel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, N.D., Sattar, N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol 20, 685–695 (2023). https://doi.org/10.1038/s41569-023-00877-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-023-00877-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing