Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Highlights of mechanisms and treatment of obesity-related hypertension

Abstract

The prevalence of obesity has increased two to three times from 1975 to 2015. Large-scale epidemiological and longitudinal prospective studies link obesity with hypertension. Research suggests that excessive weight gain, particularly when associated with visceral adiposity, may account for as much as 65% to 75% of the risk of incident hypertension. Also, exercise and bariatric/metabolic surgery significantly lowers blood pressure, whereas weight gain increases blood pressure, thus establishing a firm link between these two factors. The mechanisms underpinning obesity-related hypertension are complex and multifaceted, and include, but are not limited to, renin-angiotensin-aldosterone system/sympathetic nervous system overactivation, overstimulation of adipokines, insulin resistance, immune dysfunction, structural/functional renal, cardiac, and adipocyte changes. Though weight loss is the mainstay of treatment for obesity-related hypertension, it is often not a feasible long-term solution. Therefore, it is recommended that aggressive treatment with multiple antihypertensive medications combined with diet and exercise be used to lower blood pressure and prevent complications. The research regarding the mechanisms and treatment of obesity-related hypertension has moved at a blistering pace over the past ten years. Therefore, the purpose of this expert review is two-fold: to discuss the pathophysiological mechanisms underlying obesity-related hypertension, and to revisit pharmacotherapies that have been shown to be efficacious in patients with obesity-related hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of hypertension associated with obesity.

Similar content being viewed by others

References

  1. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    Article  PubMed  Google Scholar 

  3. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hypertension. https://www.who.int/news-room/fact-sheets/detail/hypertension.

  5. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. 2020. https://www.cdc.gov/nchs/products/databriefs/db360.htm.

  6. Cohen JB. Hypertension in obesity and the impact of weight loss. Curr Cardiol Rep. 2017;19:1–8.

    Article  CAS  Google Scholar 

  7. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bramlage P, Pittrow D, Wittchen H-U, Kirch W, Boehler S, Lehnert H, et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am J Hypertens. 2004;17:904–10.

    Article  PubMed  Google Scholar 

  9. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    Article  CAS  PubMed  Google Scholar 

  10. Juhola J, Oikonen M, Magnussen CG, Mikkilä V, Siitonen N, Jokinen E, et al. Childhood physical, environmental, and genetic predictors of adult hypertension: the cardiovascular risk in young Finns study. Circulation. 2012;126:402–9.

    Article  PubMed  Google Scholar 

  11. Perez-Pozo SE, Schold J, Nakagawa T, Sánchez-Lozada LG, Johnson RJ, Lillo JL. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int J Obes. 2010;34:454–61.

    Article  CAS  Google Scholar 

  12. Khitan Z, Kim DH. Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab. 2013;682673.

  13. Kotsis V, Nilsson P, Grassi G, Mancia G, Redon J, Luft F, et al. New developments in the pathogenesis of obesity-induced hypertension. J Hypertens. 2015;33:1499–508.

    Article  CAS  PubMed  Google Scholar 

  14. He D, Fu M, Miao S, Hotta K, Chandak GR, Xi B. FTO gene variant and risk of hypertension: a meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism. 2014;63:633–9.

    Article  CAS  PubMed  Google Scholar 

  15. Rankinen T, Sarzynski MA, Ghosh S, Bouchard C. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res. 2015;116:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin. 2017;101:129–37.

    Google Scholar 

  17. Engeli S, Sharma AM. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med. 2001;79:21–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ian Phillips M, Speakman EA, Kimura B. Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regulatory Pept. 1993;43:1–20.

    Article  Google Scholar 

  19. Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension. 2012;60:1524–30.

    Article  CAS  PubMed  Google Scholar 

  20. Engeli S, Böhnke J, Gorzelniak K, Janke JR, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45:356–62.

    Article  CAS  PubMed  Google Scholar 

  21. Nehme A, Zouein FA, Deris Zayeri Z, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6:14.

    Article  CAS  PubMed Central  Google Scholar 

  22. Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, et al. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci. 2014;126:461–9.

    Article  CAS  Google Scholar 

  23. Seravalle G, Grassi G. Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press Cardiovasc Prev. 2016;23:175–9.

    Article  CAS  PubMed  Google Scholar 

  24. Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clinic Proc. 2009;84:822–30.

    Article  Google Scholar 

  25. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17:1125–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ferrara LA, Moscato TS, Pisanti N, Marotta T, Krogh V, Capone D, et al. Is the sympathetic nervous system altered in children with familial history of arterial hypertension? Cardiology. 1988;75:200–5.

    Article  CAS  PubMed  Google Scholar 

  27. McCrory WW, Klein AA, Rosenthal RA. Blood pressure, heart rate, and plasma catecholamines in normal and hypertensive children and their siblings at rest and after standing. Hypertension. 1982;4:507–13.

    Article  CAS  PubMed  Google Scholar 

  28. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285:17271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25:893–7.

    Article  CAS  PubMed  Google Scholar 

  30. Grassi G, Dell'Oro R, Facchini A, Trevano FQ, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22:2363–9.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30:706–19. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poetsch MS, Strano A, Guan K. Role of leptin in cardiovascular diseases. Front Endocrinol. 2020;11:354.

    Article  Google Scholar 

  33. Sweeney G. Cardiovascular effects of leptin. Nat Rev Cardiol. 2010;7:22.

    Article  CAS  PubMed  Google Scholar 

  34. Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2:163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anderson EA, Hoffman R, Balon T, Sinkey C, Mark A. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Investig. 1991;87:2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Velloso LA, Folli F, Perego L, Saad MJ. The multi‐faceted cross‐talk between the insulin and angiotensin II signaling systems. Diabetes/Metab Res Rev. 2006;22:98–107.

    Article  CAS  Google Scholar 

  37. Zhou M-S, Wang A, Yu H. Link between insulin resistance and hypertension: what is the evidence from evolutionary biology? Diabetol Metab Syndr. 2014;6:1–8.

    Article  CAS  Google Scholar 

  38. Harrison DG, Marvar PJ, Titze JM. Vascular inflammatory cells in hypertension. Front Physiol. 2012;3:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chylikova J, Dvorackova J, Tauber Z, Kamarad V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162:79–82.

    Article  PubMed  Google Scholar 

  40. Aroor AR, McKarns S, DeMarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62:1543–52.

    Article  CAS  PubMed  Google Scholar 

  41. Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511–40.

    Article  PubMed  Google Scholar 

  42. Lee I, Kim S, Nagar H, Choi S-j, Jeon BH, Piao S, et al. CR6-interacting factor 1 deficiency reduces endothelial nitric oxide synthase activity by inhibiting biosynthesis of tetrahydrobiopterin. Sci Rep. 2020;10:1–13.

    CAS  Google Scholar 

  43. Chang L, Garcia-Barrio MT, Chen YE. Perivascular adipose tissue regulates vascular function by targeting vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2020;40:1094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dimitrova R, Petkova V, Dimitrov M, Madzharov V, Nikolova I, Petkova E, et al. Obesity-relationship with vascular dysfunction. Adv Obes Weight Manag Control. 2014;1:1–5.

    Google Scholar 

  45. Engin A. Endothelial dysfunction in obesity. In: Obesity and lipotoxicity; 2017. p. 345–79.

  46. Hirohama D, Fujita T. Evaluation of the pathophysiological mechanisms of salt-sensitive hypertension. Hypertension Res. 2019;42:1848–57.

    Article  CAS  Google Scholar 

  47. Grigoraș A, Balan RA, Căruntu I-D, Giușcă SE, Lozneanu L, Avadanei RE, et al. Perirenal adipose tissue—current knowledge and future opportunities. J Clin Med. 2021;10:1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brady TM. The role of obesity in the development of left ventricular hypertrophy among children and adolescents. Curr Hypertens Rep. 2016;18:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  50. Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS ONE. 2016;11:e0154003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Z, Liang S, Que S, Zhou L, Zheng S, Mardinoglu A. Meta-analysis of adiponectin as a biomarker for the detection of metabolic syndrome. Front Physiol. 2018;9:1238.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ohashi K, Parker JL, Ouchi N, Higuchi A, Vita JA, Gokce N, et al. Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem. 2010;285:6153–60.

    Article  CAS  PubMed  Google Scholar 

  53. Chan MT, Wang CY, Seet E, Tam S, Lai HY, Chew EF, et al. Association of unrecognized obstructive sleep apnea with postoperative cardiovascular events in patients undergoing major noncardiac surgery. JAMA. 2019;321:1788–98.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sarkar P, Mukherjee S, Chai-Coetzer CL, McEvoy RD. The epidemiology of obstructive sleep apnoea and cardiovascular disease. J Thorac Dis. 2018;10:S4189.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dewan NA, Nieto FJ, Somers VK. Intermittent hypoxemia and OSA: implications for comorbidities. Chest. 2015;147:266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea: a review. Jama. 2020;323:1389–400.

    Article  PubMed  Google Scholar 

  57. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd‐Jones D, et al. Obesity‐related hypertension: Pathogenesis, cardiovascular risk, and treatment—a position paper of The Obesity Society and the American Society of Hypertension. Obesity. 2013;21:8–24.

    Article  PubMed  Google Scholar 

  58. Gorostegi-Anduaga I, Corres P, MartinezAguirre-Betolaza A, Pérez-Asenjo J, Aispuru GR, Fryer SM, et al. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study. Eur J Prevent Cardiol. 2018;25:343–53.

    Article  Google Scholar 

  59. Kucharska A, Gajewska D, Kiedrowski M, Sinska B, Juszczyk G, Czerw A, et al. The impact of individualised nutritional therapy according to DASH diet on blood pressure, body mass, and selected biochemical parameters in overweight/obese patients with primary arterial hypertension: a prospective randomised study. Kardiol Pol. 2018;76:158–65.

    Article  PubMed  Google Scholar 

  60. Ahmadi N, Eshaghian S, Huizenga R, Sosnin K, Ebrahimi R, Siegel R. Effects of intense exercise and moderate caloric restriction on cardiovascular risk factors and inflammation. Am J Med. 2011;124:978–82.

    Article  PubMed  Google Scholar 

  61. Cohen JB, Gadde KM. Weight loss medications in the treatment of obesity and hypertension. Curr Hypertens Rep. 2019;21:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. James WPT, Astrup A, Finer N, Hilsted J, Kopelman P, Rössner S, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. Lancet. 2000;356:2119–25.

    Article  CAS  PubMed  Google Scholar 

  63. Greenway FL, Aronne LJ, Raben A, Astrup A, Apovian CM, Hill JO, et al. A randomized, double‐blind, placebo‐controlled study of Gelesis100: a novel nonsystemic oral hydrogel for weight loss. Obesity. 2019;27:205–16.

    Article  CAS  PubMed  Google Scholar 

  64. Sharretts J, Galescu O, Gomatam S, Andraca-Carrera E, Hampp C, Yanoff L. Cancer risk associated with lorcaserin—the FDA’s review of the CAMELLIA-TIMI 61 trial. N Engl J Med. 2020;383:1000–2.

    Article  CAS  PubMed  Google Scholar 

  65. Kuo HH, Wang KT, Lee YH, Lin PL, Liu ME, Lin CY, et al. Effects of lorcaserin on cardiometabolic risk factors in overweight and obese patients: a systematic review and meta‐analysis. J Clin Pharm Ther. 2020;45:35–44.

    Article  CAS  PubMed  Google Scholar 

  66. Wiggins T, Guidozzi N, Welbourn R, Ahmed AR, Markar SR. Association of bariatric surgery with all-cause mortality and incidence of obesity-related disease at a population level: a systematic review and meta-analysis. PLoS Med. 2020;17:e1003206.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schiavon CA, Bersch-Ferreira AC, Santucci EV, Oliveira JD, Torreglosa CR, Bueno PT, et al. Effects of bariatric surgery in obese patients with hypertension: the GATEWAY randomized trial (gastric bypass to treat obese patients with steady hypertension). Circulation. 2018;137:1132–42.

    Article  PubMed  Google Scholar 

  68. Seravalle G, Colombo M, Perego P, Giardini V, Volpe M, Dell’Oro R, et al. Long-term sympathoinhibitory effects of surgically induced weight loss in severe obese patients. Hypertension. 2014;64:431–7.

    Article  CAS  PubMed  Google Scholar 

  69. Chang S-H, Stoll CR, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149:275–87.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension global hypertension practice guidelines. Hypertension. 2020;75

  71. Francischetti EA, de Abreu VG, da Silva Figueiredo LF, Dezonne RS, Coutinho ESF. Effects of blood pressure lowering agents on cardiovascular outcomes in weight excess patients: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2020;20:447–70

    Article  CAS  PubMed  Google Scholar 

  72. Messerli FH, Bell DS, Fonseca V, Katholi RE, McGill JB, Phillips RA, et al. Body weight changes with β-blocker use: results from GEMINI. The. Am J Med. 2007;120:610–5.

    Article  CAS  PubMed  Google Scholar 

  73. Carnagarin R, Matthews V, Gregory C, Schlaich MP. Pharmacotherapeutic strategies for treating hypertension in patients with obesity. Expert Opin Pharmacother. 2018;19:643–51.

    Article  CAS  PubMed  Google Scholar 

  74. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  75. Cai X, Yang W, Gao X, Chen Y, Zhou L, Zhang S, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta‐analysis. Obesity. 2018;26:70–80.

    Article  CAS  PubMed  Google Scholar 

  76. Wadden TA, Bailey TS, Billings LK, Davies M, Frias JP, Koroleva A, et al. Effect of subcutaneous semaglutide vs placebo as an adjunct to intensive behavioral therapy on body weight in adults with overweight or obesity: the STEP 3 randomized clinical trial. JAMA. 2021;325:1403–13.

    Article  CAS  PubMed  Google Scholar 

  77. Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376:595–605.

    Article  CAS  PubMed  Google Scholar 

  78. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22.

    Article  CAS  PubMed  Google Scholar 

  79. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377:1341–52.

    Article  CAS  PubMed  Google Scholar 

  80. Sjöström L, Rissanen A, Andersen T, Boldrin M, Golay A, Koppeschaar HP, et al. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet. 1998;352:167–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

VK was supported by a Roy J. and Lucille A. Carver College of Medicine Summer Fellowship in 2019. JP is a recipient of the Iowa Center for Research for Undergraduates Fellowship and a fellow at the Iowa Biosciences Academy.

Author information

Authors and Affiliations

Authors

Contributions

ES, VK, JP, RG, WO, and MC drafted the original manuscript. WO drafted the figure, and VK edited and drafted the table and figures. VK and MC critically revised the manuscript for grammar, and intellectual content. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Marcelo Lima de Gusmão Correia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, E., Kamalumpundi, V., Peterson, J. et al. Highlights of mechanisms and treatment of obesity-related hypertension. J Hum Hypertens 36, 785–793 (2022). https://doi.org/10.1038/s41371-021-00644-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00644-y

This article is cited by

Search

Quick links