Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic footprints of a rapid and large-scale range expansion: the case of cyclic common vole in Spain

Abstract

In the Anthropocene, many species are rapidly shifting their ranges in response to human-driven habitat modifications. Studying patterns and genetic signatures of range shifts helps to understand how species cope with environmental disturbances and predict future shifts in the face of global environmental change. We investigated the genetic signature of a contemporary wide-range expansion observed in the Iberian common vole Microtus arvalis asturianus shortly after a colonization event. We used mtDNA and microsatellite data to investigate patterns of genetic diversity, structure, demography, and gene flow across 57 localities covering the historical range of the species and the newly colonized area. The results showed a genetic footprint more compatible with a true range expansion (i.e. the colonization of previously unoccupied areas), than with a model of “colonization from within” (i.e. local expansions from small, unnoticed populations). Genetic diversity measures indicated that the source population was likely located at the NE of the historical range, with a declining gradient of genetic diversity towards the more recently invaded areas. At the expansion front, we observed the greatest gene flow and smallest pairwise differences between nearby localities. Both natural landscape features (rivers) and recent anthropogenic barriers (roads, railways) explained a large proportion of genetic variance among populations and had a significant impact on the colonization pathways used by voles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling sites and main rivers in the study area.
Fig. 2: Genetic clusters and migration networks.
Fig. 3: Haplotype network, patterns of spatial genetic differentiation and demographic changes over time.
Fig. 4: Map showing the spatial distribution of genetic diversity parameters based on STR and mtDNA markers.

Similar content being viewed by others

References

  • Alcala N, Goudet J, Vuilleumier S (2014) On the transition of genetic differentiation from isolation to panmixia: what we can learn from GST and D. Theor Popul Biol 93:75–84

    Article  PubMed  Google Scholar 

  • Alda F, Doadrio I (2014) Spatial genetic structure across a hybrid zone between European rabbit subspecies. PeerJ 2:e582

    Article  PubMed  PubMed Central  Google Scholar 

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Lett 14:677–689

    Article  PubMed  Google Scholar 

  • Austerlitz F, Jung-Muller B, Godelle B, Gouyon P-H (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164

    Article  Google Scholar 

  • Baca M, Popović D, Baca K, Lemanik A, Doan K, Horáček I et al. (2020) Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes – Evidence from ancient DNA. Quat Sci Rev 233:106239

    Article  Google Scholar 

  • Baca M, Popović D, Lemanik A, Bañuls-Cardona S, Conard NJ, Cuenca-Bescós G et al. (2023) Ancient DNA reveals interstadials as a driver of common vole population dynamics during the last glacial period. J Biogeogr 50:183–196

    Article  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. PNAS 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Benítez-López A, Alkemade R, Verweij PA (2010) The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol Conserv 143:1307–1316

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Brodie JF (2016) Synergistic effects of climate change and agricultural land use on mammals. Front Ecol Environ 14:20–26

    Article  Google Scholar 

  • Caplat P, Edelaar P, Dudaniec RY, Green AJ, Okamura B, Cote J et al. (2016) Looking beyond the mountain: dispersal barriers in a changing world. Front Ecol Environ 14:261–268

    Article  Google Scholar 

  • Conord C, Gurevitch J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol Evol 2:2600–2614

    Article  PubMed  PubMed Central  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843

    Article  PubMed  Google Scholar 

  • Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246

    Article  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • D’Amico M, Ascensão F, Fabrizio M, Barrientos R, Gortázar C (2018) Twenty years of Road ecology: a topical collection looking forward for new perspectives. Eur J Wildl Res 64:26

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and high-performance computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delibes M, Brunet-Lecomte P (1980) Presencia del Topillo Campesino ibérico. Microtus arvalis asturianus (Miller, 1908) en la Meseta del Duero. Doñana Acto Vert 7:120–123

    Google Scholar 

  • Delibes J (1989) Plagas de topillos en España. Quercus 35:17–20

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Domínguez JC, Calero-Riestra M, Olea PP, Malo JE, Burridge CP, Proft K et al. (2021) Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures. Sci Rep. 11:12534

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duckworth RA (2008) Adaptive dispersal strategies and the dynamics of a range expansion. Am Naturalist 172:S4–S17

    Article  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  CAS  PubMed  Google Scholar 

  • Engering A, Hogerwerf L, Slingenbergh J (2013) Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2:1–7

    Article  Google Scholar 

  • Estrada A, Morales-Castilla I, Caplat P, Early R (2016) Usefulness of Species Traits in Predicting Range Shifts. Trends Ecol Evol. 31:190–203

    Article  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351

    Article  PubMed  Google Scholar 

  • Forsman A, Merilä J, Ebenhard T (2011) Phenotypic evolution of dispersal-enhancing traits in insular voles. Proc Biol Sci 278:225–232

    PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller T, Bensch S, Müller I, Novembre J, Pérez-Tris J, Ricklefs RE et al. (2012) The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research. EcoHealth 9:80–88

    Article  PubMed  Google Scholar 

  • García JT, Domínguez‐Villaseñor J, Alda F, Calero‐Riestra M, Olea PP, Fargallo JA et al. (2020) A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. J Zool Syst Evolut Res 58:459–474

    Article  Google Scholar 

  • García J, Morán-Ordóñez A, García JT, Calero-Riestra M, Alda F, Sanz J et al. (2021) Current landscape attributes and landscape stability in breeding grounds explain genetic differentiation in a long-distance migratory bird. Anim Conserv 24:120–134

    Article  Google Scholar 

  • Gaston KJ (2009) Geographic range limits of species. Proc R Soc B: Biol Sci 276:1391–1393

    Article  CAS  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson J (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629

    Article  CAS  PubMed  Google Scholar 

  • Gauffre B, Galan M, Bretagnolle V, Cosson J (2007) Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis. Mol Ecol Notes 7:830–832

    Article  CAS  Google Scholar 

  • Gerlach G, Musolf K (2000) Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv Biol 14:1066–1074

    Article  Google Scholar 

  • Gilbert KJ, Sharp NP, Angert AL, Conte GL, Draghi JA, Guillaume F et al. (2017) Local adaptation interacts with expansion load during range expansion: maladaptation reduces expansion load. Am Naturalist 189:368–380

    Article  Google Scholar 

  • Gómez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Phylogeography of southern European refugia, Springer, pp 155–188

  • González de Molina M, Soto Fernández D, Infante-Amate J, Aguilera E, Vila Traver J, Guzmán GI (2017) Decoupling food from land: the Evolution of Spanish agriculture from 1960 to 2010. Sustainability 9:2348

    Article  Google Scholar 

  • González-Esteban J, Villate I, Gosálbez J (1995) Expansión del área de distribución de Microtus arvalis asturianus Miller, 1908 (Rodentia, Arvicolidae) en la Meseta Norte (España). Doñana, Acta Vertebrata 22:106–110

    Google Scholar 

  • Goodsman DW, Cooke B, Coltman DW, Lewis MA (2014) The genetic signature of rapid range expansions: how dispersal, growth and invasion speed impact heterozygosity and allele surfing. Theor Popul Biol 98:1–10

    Article  PubMed  Google Scholar 

  • Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A et al. (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101

    Article  Google Scholar 

  • Heppenheimer E, Cosio DS, Brzeski KE, Caudill D, Van Why K, Chamberlain MJ et al. (2018) Demographic history influences spatial patterns of genetic diversity in recently expanded coyote (Canis latrans) populations. Heredity 120:183–195

    Article  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D et al. (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414

    Article  Google Scholar 

  • Huth G, Haegeman B, Pitard E, Munoz F (2015) Long-distance rescue and slow extinction dynamics govern multiscale metapopulations. Am Naturalist 186:460–469

    Article  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • Ishibashi Y, Saitoh T, Abe S, Yoshida MC (1997) Cross-species amplification of microsatellite DNA in Old World microtine rodents with PCR primers for the gray-sided vole, Clethrionomys rufocanus. Mammal Study 22:5–10

    Article  Google Scholar 

  • Jareño D, Viñuela J, Luque-Larena JJ, Arroyo L, Arroyo B, Mougeot F (2015) Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol Invasions 17:2315–2327

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledevin R, Millien V (2013) Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 3:4172–4182

    Article  PubMed  PubMed Central  Google Scholar 

  • Legault G, Bitters ME, Hastings A, Melbourne BA (2020) Interspecific competition slows range expansion and shapes range boundaries. Proc Natl Acad Sci USA 117:26854–26860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lenoir J, Svenning J-C (2015) Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38:15–28

    Article  Google Scholar 

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luque-Larena JJ, Mougeot F, Vinuela J, Jareno D, Arroyo L, Lambin X et al. (2013) Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol 14:432–441

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Miller MP (2005) Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Heredity 96:722–724

    Article  CAS  Google Scholar 

  • Miller TEX, Angert AL, Brown CD, Lee-Yaw JA, Lewis M, Lutscher F et al. (2020) Eco-evolutionary dynamics of range expansion. Ecology 101:e03139

    Article  PubMed  Google Scholar 

  • Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales C, Ortega Villazán MT (2002) Inundaciones en Castilla y león. Ería: Revista cuatrimestral de geografía, ISSN 0211-0563, No 59, 2002, pp 305–332

  • Mougeot F, Lambin X, Rodríguez‐Pastor R, Romairone J, Luque‐Larena J-J (2019) Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100:e02776

    Article  PubMed  Google Scholar 

  • Niethammer J, Winking H (1971) Die spanische Feldmaus (Microtus arvalis asturianus Miller, 1908). Bonn Zoologisches Beitrage 19:189–197

    Google Scholar 

  • Norén K, Statham MJ, Ågren EO, Isomursu M, Flagstad Ø, Eide NE et al. (2015) Genetic footprints reveal geographic patterns of expansion in Fennoscandian red foxes. Glob Change Biol 21:3299–3312

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D et al. (2019) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

  • O’Regan HJ (2008) The Iberian Peninsula–corridor or cul-de-sac? Mammalian faunal change and possible routes of dispersal in the last 2 million years. Quat Sci Rev 23:2136–2144

    Article  Google Scholar 

  • Pacifici M, Rondinini C, Rhodes JR, Burbidge AA, Cristiano A, Watson JEM et al. (2020) Global correlates of range contractions and expansions in terrestrial mammals. Nat Commun 11:2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol, Evol, Syst 37:637–669

    Article  Google Scholar 

  • Paulose J, Hallatschek O (2020) The impact of long-range dispersal on gene surfing. Proc Natl Acad Sci USA 117:7584–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I-C et al. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355:eaai9214

    Article  PubMed  Google Scholar 

  • Pilkington MM, Wilder JA, Mendez FL, Cox MP, Woerner A, Angui T et al. (2008) Contrasting signatures of population growth for mitochondrial DNA and Y chromosomes among human populations in Africa. Mol Biol Evol 25:517–525

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2016) Tracer v1. 6. 2014 Available at beast. bio. ed. ac. uk/Tracer. Accessed August 1

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Rey JM (1973) Notas sobre mastozoología ibérica. 1.- Las características biométricas y morfológicas del topillo campesino, Microtus arvalis asturianus, del Sistema Ibérico (Mammalia, Rodentia). Boletín de la Real Soc Española de Historia Nat (Biolía) 71:283–297

    Google Scholar 

  • Rodríguez-Pastor R, Luque-Larena JJ, Lambin X, Mougeot F (2016) “Living on the edge”: The role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland. Agriculture, Ecosyst Environ 231:206–217

    Article  Google Scholar 

  • Rowe KC, Rowe KMC, Tingley MW, Koo MS, Patton JL, Conroy CJ et al. (2015) Spatially heterogeneous impact of climate change on small mammals of montane California. Proc R Soc B: Biol Sci 282:20141857

    Article  Google Scholar 

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    Article  CAS  PubMed  Google Scholar 

  • Rytwinski T, Fahrig L (2013) Why are some animal populations unaffected or positively affected by roads? Oecologia 173:1143–1156

    Article  PubMed  Google Scholar 

  • Salzburger W, Ewing GB, Haeseler AV (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  PubMed  Google Scholar 

  • Sánchez-Guillén RA, Córdoba-Aguilar A, Hansson B, Ott J, Wellenreuther M (2016) Evolutionary consequences of climate-induced range shifts in insects. Biol Rev 91:1050–1064

    Article  PubMed  Google Scholar 

  • Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol, Evol, Syst 40:415–436

    Article  Google Scholar 

  • Sherpa S, Després L (2021) The evolutionary dynamics of biological invasions: A multi-approach perspective. Evolut Appl 14:1463–1484

    Article  Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci USA 108:5708–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M, Excoffier L (2012) Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics 191:171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stojak J, Wójcik JM, Ruczyńska I, Searle JB, McDevitt AD (2016) Contrasting and congruent patterns of genetic structuring in two Microtus vole species using museum specimens. Mammal Res 61:141–152

    Article  Google Scholar 

  • Stojak J, Borowik T, Górny M, McDevitt AD, Wójcik JM (2019a) Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Res 64:19–29

    Article  Google Scholar 

  • Stojak J, Tarnowska E (2019b) Polish suture zone as the goblet of truth in post-glacial history of mammals in Europe. Mammal Res 64:463–475

    Article  Google Scholar 

  • Suckling DM, Conlong DE, Carpenter JE, Bloem KA, Rendon P, Vreysen MJB (2017) Global range expansion of pest Lepidoptera requires socially acceptable solutions. Biol Invasions 19:1107–1119

    Article  Google Scholar 

  • Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475

    Article  PubMed  PubMed Central  Google Scholar 

  • Svenning J-C, Gravel D, Holt RD, Schurr FM, Thuiller W, Münkemüller T et al. (2014) The influence of interspecific interactions on species range expansion rates. Ecography 37:1198–1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaegers J, Mergeay J, Therry L, Larmuseau MHD, Bonte D, Stoks R (2013) Rapid range expansion increases genetic differentiation while causing limited reduction in genetic diversity in a damselfly. Heredity 111:422–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tougard C, Renvoisé E, Petitjean A, Quéré J-P (2008) New insight into the colonization processes of common voles: inferences from molecular and fossil evidence. PLoS ONE 3:e3532

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallingford PD, Morelli TL, Allen JM, Beaury EM, Blumenthal DM, Bradley BA et al. (2020) Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat Clim Chang 10:398–405

    Article  Google Scholar 

  • Weir B, Cockerham C (1984) Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population-Structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to students and friends for their help during the fieldwork, with special thanks to Iván García, Xurxo Piñeiro, Fernando Arce, Julián Núñez, and Vega Santos. Thanks to lab technicians, specially to María Santoro. Samples from Campo Azálvaro were kindly provided by Juan Antonio Fargallo (MNCN, CSIC), who also provided insightful comments on the manuscript. Thanks are also due to GREFA for the support and cooperation the landowners who allowed us access to their properties, and the communities and mayors from the villages of Villalar de Los Comuneros, Boada de Campos, San Martín de Valderaduey and Fuentes de Nava. This work was supported by I + D National Plan Projects of the Spanish Ministry of Economy, Industry and Competitiveness (CGL2011-30274, CGL2015-71255-P, CGL2013-42451-P) co-funded by the European Regional Development Fund (FEDER, EU), and the Fundación BBVA Research Project TOPIGEPLA (2014 call). J Martínez-Padilla was funded by ARAID foundation and currently by Science and Education Ministry (PID2019-104835GB-100). Julio Domínguez was supported by a predoctoral grant: “Programa Talento Formación” funded by Fondo Social Europeo (FSE) and Castilla La Mancha regional government (JCCM) (ref: SBPLY/16/180501/000205). Julio Domínguez was also supported by Margarita Salas fellowship funded by NextGenerationEU, Ministry of Universities and Recovery, Transformation and ResiliencePlan, through a call from Castilla-La Mancha University. We thank three anonymous reviewers for their constructive feedback.

Author information

Authors and Affiliations

Authors

Contributions

JTG, JCD, JVM, PPO, JMP, JJO and JH conceived the study. All authors collected samples. JCD and MCR performed the lab work. JCD, MCR and JTG analysed the genetic data. JCD and JTG led the writing and the rest of authors contributed to edit and review the manuscript.

Corresponding author

Correspondence to Julio C. Domínguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Ben Evans.

Supplementary information

41437_2023_613_MOESM1_ESM.docx

Genetic footprints of a rapid and large-scale range expansion: the case of cyclic common vole in Spain. Supplemental Material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, J.C., Alda, F., Calero-Riestra, M. et al. Genetic footprints of a rapid and large-scale range expansion: the case of cyclic common vole in Spain. Heredity 130, 381–393 (2023). https://doi.org/10.1038/s41437-023-00613-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41437-023-00613-w

Search

Quick links