Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy

Abstract

After the successful discoveries of numerous antibiotics from microorganisms, frequent reisolation of known compounds becomes an obstacle in further development of new drugs from natural products. Exploration of biological sources that can provide novel scaffolds is thus an urgent matter in drug lead screening. As an alternative source to the conventionally used soil microorganisms, we selected endophytic actinomycetes, marine actinomycetes, and actinomycetes in tropical areas for investigation and found an array of new bioactive compounds. Furthermore, based on the analysis of the distribution pattern of biosynthetic gene clusters in bacteria together with available genomic data, we speculated that biosynthetic gene clusters for secondary metabolites are specific to each genus. Based on this assumption, we investigated actinomycetal and marine bacterial genera from which no compounds have been reported, which led to the discovery of a variety of skeletally novel bioactive compounds. These findings suggest that consideration of environmental factor and taxonomic position is critically effective in the selection of potential strains producing structurally unique compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:a025247.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dinos GP. The macrolide antibiotic renaissance. Br J Pharm. 2017;174:2967–83.

    Article  CAS  Google Scholar 

  3. Siegenthaler WE, Bonetti A, Luthy R. Aminoglycoside antibiotics in infectious diseases. An overview. Am J Med. 1986;80:2–14.

    Article  CAS  PubMed  Google Scholar 

  4. Singh S, Khanna D, Kalra S. Minocycline and doxycycline: more than antibiotics. Curr Mol Pharm. 2021;14:1046–65.

    Article  CAS  Google Scholar 

  5. Schreiber SL. Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 1991;251:283–7.

    Article  CAS  PubMed  Google Scholar 

  6. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.

    Article  CAS  PubMed  Google Scholar 

  7. Higashide, et al. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia. Nature. 1977;270:721–2.

    Article  CAS  PubMed  Google Scholar 

  8. Okazaki T, Takahashi K, Kizuka M, Enokita R. Studies on actinomycetes isolated from plant leaves. Annu Rep. Sankyo Res Lab. 1995;47:97–106.

    Google Scholar 

  9. Coombs JT, Franco CM. Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol. 2003;69:4260–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Igarashi Y, et al. Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetol. 2002;16:9–13.

    Article  CAS  Google Scholar 

  11. Igarashi Y, Iida T, Yoshida R, Furumai T. Pteridic acids A and B, novel plant growth promoters with auxin-like activity from Streptomyces hygroscopicus TP-A0451. J Antibiot. 2002;55:764–7.

    Article  CAS  Google Scholar 

  12. Nakahata T, Kuwahara S. Enantioselective total synthesis of pteridic acid A. Chem Commun. 2005;1028–30.

  13. Dias LC, Salles AG. Total synthesis of pteridic acids A and B. J Org Chem. 2009;74:5584–9.

    Article  CAS  PubMed  Google Scholar 

  14. Yadav JS, Rajender V, Rao YG. Total synthesis of pteridic acid A. Org Lett. 2010;12:348–50.

    Article  CAS  PubMed  Google Scholar 

  15. Han B, Li WX, Cui CB. Pteridic acid hydrate and pteridic acid C produced by Streptomyces pseudoverticillus YN17707 induce cell cycle arrest. Chin J Nat Med. 2015;13:467–70.

    CAS  PubMed  Google Scholar 

  16. Nong XH, Wei XY, Qi SH. Pteridic acids C-G spirocyclic polyketides from the marine-derived Streptomyces sp. SCSGAA 0027. J Antibiot. 2017;70:1047–52.

    Article  CAS  Google Scholar 

  17. Igarashi Y, et al. Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J Antibiot. 2000;53:1117–22.

    Article  CAS  Google Scholar 

  18. Aremu EA, et al. Specific inhibition of spore germination of Alternaria brassicicola by fistupyrone from Streptomyces sp. TP-A0569. J Gen Plant Pathol. 2003;69:211–7.

    Article  CAS  Google Scholar 

  19. Furumai T, Yamakawa T, Yoshida R, Igarashi Y. Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation and biological properties. J Antibiot. 2003;56:700–4.

    Article  CAS  Google Scholar 

  20. Igarashi Y, et al. Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. II. Physico-chemical properties and structure determination. J Antibiot. 2003;56:705–8.

    Article  CAS  Google Scholar 

  21. Cai P, et al. Polyene antibiotics from Streptomyces mediocidicus. J Nat Prod. 2007;70:215–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hong H, Samborskyy M, Usachova K, Schnatz K, Leadlay PF. Sulfation and amidinohydrolysis in the biosynthesis of giant linear polyenes. Beilstein J Org Chem. 2017;13:2408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun F, Xu S, Jiang F, Liu W. Genomic-driven discovery of an amidinohydrolase involved in the biosynthesis of mediomycin A. Appl Microbiol Biotechnol. 2018;102:2225–34.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki T, Igarashi Y, Saito N, Furumai T. Cedarmycins A and B, new antimicrobial antibiotics from Streptomyces sp. TP-A0456. J Antibiot. 2001;54:567–72.

    Article  CAS  Google Scholar 

  25. Ismiyarto, et al. Catalytic enantioselective intramolecular Tishchenko reaction of meso-dialdehyde: synthesis of (S)-cedarmycins. RSC Adv. 2021;11:11606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Igarashi Y, et al. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod. 2011;74:670–4.

    Article  CAS  PubMed  Google Scholar 

  27. Dauang R, et al. Characterization of the biosynthetic gene cluster for maklamicin, a spirotetronate-class antibiotic of the endophytic Micromonospora sp. NBRC 110955. Microbiol Res. 2015;180:30–9.

    Article  Google Scholar 

  28. Indananda C, Igarashi Y, Ikeda M, Oikawa T, Thamachaipenet A. Linfuranone A, a new polyketide from plant-derived Microbispora sp. GMKU363. J Antibiot. 2013;66:675–7.

    Article  CAS  Google Scholar 

  29. Akiyama H, et al. Linfuranones B and C, furanone-containing polyketides from a plant-associated Sphaerimonospora mesophila. J Nat Prod. 2018;81:1561–9.

    Article  CAS  PubMed  Google Scholar 

  30. Komaki H, et al. Draft genome sequence of linfuranone producer Microbispora sp. GMKU363. Genome Announc. 2015;3:e01471–15.

    PubMed  PubMed Central  Google Scholar 

  31. Igarashi Y, et al. Alchivemycin A, a bioactive polycyclic polyketide with an unprecedented skeleton from Streptomyces sp. Org Lett. 2010;12:3402–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kim Y, In Y, Ishida T, Onaka H, Igarashi Y. Biosynthetic origin of alchivemycin A, a new polyketide from Streptomyces and absolute configuration of alchivemycin B. Org Lett. 2013;15:3514–7.

    Article  CAS  PubMed  Google Scholar 

  33. Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77:400–6.

    Article  CAS  PubMed  Google Scholar 

  34. Komaki H, et al. Draft genome sequence of Streptomyces sp. TP-A0867, an alchivemycin producer. Stand Genom Sci. 2016;11:85.

    Article  Google Scholar 

  35. Zhu HJ, et al. Redox modifications in the biosynthesis of alchivemycin A enable the formation of its key pharmacophore. J Am Chem Soc. 2021;143:4751–7.

    Article  CAS  PubMed  Google Scholar 

  36. Zhu HJ, et al. AvmM catalyses macrocyclization through dehydration/Michael-type addition in alchivemycin A biosynthesis. Nat Commun. 2022;13:4499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Igarashi Y, et al. Brartemicin, an inhibitor of tumor cell invasion from the actinomycete Nonomuraea sp. J Nat Prod. 2009;72:980–2.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang YL, et al. Synthesis and evaluation of trehalose-based compounds as anti-invasive agents. Bioorg Med Chem Lett 2011;21:1089–91.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang YL, et al. Synthesis and structure-activity relationships studies of brartemicin analogs as anti-invasive agents. J Antibiot. 2013;66:531–7.

    Article  CAS  Google Scholar 

  40. Tang L, et al. Inhibition of angiogenesis and invasion by DMBT is mediated by downregulation of VEGF and MMP-9 through Akt pathway in MDA-MB-231 breast cancer cells. Food Chem Toxicol. 2013;56:204–13.

    Article  CAS  PubMed  Google Scholar 

  41. Tang L, et al. Inhibition of invasion and metastasis by DMBT, a novel trehalose derivative, through Akt/GSK-3β/β-catenin pathway in B16BL6 cells. Chem Biol Interact. 2014;222:7–17.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang YL, et al. Synthesis and evaluation of trehalose-based compounds as novel inhibitors of cancer cell migration and invasion. Chem Biol Drug Des. 2015;86:1017–29.

    Article  CAS  PubMed  Google Scholar 

  43. Jacobsen KM, et al. The natural product brartemicin is a high affinity ligand for the carbohydrate-recognition domain of the macrophage receptor mincle. Medchemcomm 2015;6:647–52.

    Article  CAS  PubMed  Google Scholar 

  44. Rasheed OK, et al. 6,6’-Aryl trehalose analogs as potential Mincle ligands. Bioorg Med Chem. 2020;28:115564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dangerfield EM, Lynch AT, Kodar K, Stocker BL, Timmer MSM. Amide-linked brartemicin glycolipids exhibit Mincle-mediated agonist activity in vitro. Carbohydr Res. 2022;511:108461.

    Article  CAS  PubMed  Google Scholar 

  46. Foster AJ, et al. Lipidated brartemicin analogues are potent Th1-stimulating vaccine adjuvants. J Med Chem. 2018;61:1045–60.

    Article  CAS  PubMed  Google Scholar 

  47. Ryter KT, et al. Aryl trehalose derivatives as vaccine adjuvants for Mycobacterium tuberculosis. J Med Chem. 2020;63:309–20.

    Article  CAS  PubMed  Google Scholar 

  48. Foster AJ, Kodar K, Timmer MSM, Stocker BL. ortho-Substituted lipidated brartemicin derivative shows promising Mincle-mediated adjuvant activity. Org Biomol Chem. 2020;18:1095–103.

    Article  CAS  PubMed  Google Scholar 

  49. Miyanaga S, et al. Absolute configuration and antitumor activity of myxochelin A produced by Nonomuraea pusilla TP-A0861. J Antibiot. 2006;59:698–703.

    Article  CAS  Google Scholar 

  50. Miyanaga S, Sakurai H, Saiki I, Onaka H, Igarashi Y. Synthesis and evaluation of myxochelin analogues as antimetastatic agents. Bioorg Med Chem. 2009;17:2724–32.

    Article  CAS  PubMed  Google Scholar 

  51. Igarashi Y, Miura S, Fujita T, Furumai T. Pterocidin, a cytotoxic compound from the endophytic Streptomyces hygroscopicus. J Antibiot. 2006;59:193–5.

    Article  CAS  Google Scholar 

  52. Igarashi Y, et al. Absolute configuration of pterocidin, a potent inhibitor of tumor cell invasion from a marine-derived Streptomyces. Tetrahedron Lett. 2012;53:654–6.

    Article  CAS  Google Scholar 

  53. Igarashi Y, et al. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett. 2007;17:3702–5.

    Article  CAS  PubMed  Google Scholar 

  54. Igarashi Y, et al. Lupinacidin C, an inhibitor of tumor cell invasion from Micromonospora lupini. J Nat Prod. 2011;74:862–5.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang C, et al. Biosynthetic Baeyer-Villiger chemistry enables access to two anthracene scaffolds from a single gene cluster in deep-sea-derived Streptomyces olivaceus SCSIO T05. J Nat Prod. 2018;81:1570–7.

    Article  CAS  PubMed  Google Scholar 

  56. Tsypik O, et al. Oxidative carbon backbone rearrangement in rishirilide biosynthesis. J Am Chem Soc. 2020;142:5913–7.

    Article  CAS  PubMed  Google Scholar 

  57. Sottorff I, et al. Antitumor anthraquinones from an Easter Island sea anemone: Animal or bacterial origin? Mar Drugs. 2019;17:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gulder TA, Moore BS. Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Ed Engl. 2010;49:9346–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Furumai T, Takagi K, Igarashi Y, Saito N, Oki T. Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. I. Taxonomy, fermentation, isolation and biological properties. J Antibiot. 2000;53:227–32.

    Article  CAS  Google Scholar 

  60. Igarashi Y, et al. Arisostatins A and B, new members of tetrocarcin class of antibiotics from Micromonospora sp. TP-A0316. II. Structure determination. J Antibiot. 2000;53:233–40.

    Article  CAS  Google Scholar 

  61. Komaki H, Ichikawa N, Hosoyama A, Hamada M, Igarashi Y. In silico analysis of PKS and NRPS gene clusters in arisostatin- and kosinostatin-producers and description of Micromonospora okii sp. nov. Antibiotics 2021;10:1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim YH, et al. Arisostatin A induces apoptosis through the activation of caspase-3 and reactive oxygen species generation in AMC-HN-4 cells. Biochem Biophys Res Commun. 2003;309:449–56.

    Article  CAS  PubMed  Google Scholar 

  63. Furumai T, Igarashi Y, Higuchi H, Saito N. Oki T. Kosinostatin, a quinocycline antibiotic with antitumor activity from Micromonospora sp. TP-A0468. J Antibiot. 2002;55:128–33.

    Article  CAS  Google Scholar 

  64. Igarashi Y, Higuchi H, Oki T, Furumai T. NMR analysis of quinocycline antibiotics: structure determination of kosinostatin, an antitumor substance from Micromonospora sp. TP-A0468. J Antibiot. 2002;55:134–40.

    Article  CAS  Google Scholar 

  65. Ma HM, et al. Unconventional origin and hybrid system for construction of pyrrolopyrrole moiety in kosinostatin biosynthesis. Chem Biol. 2013;20:796–805.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Z, et al. Hydroxyl regioisomerization of anthracycline catalyzed by a four-enzyme cascade. Proc Natl Acad Sci USA. 2017;114:1554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu Y et al. Deciphering the origin and formation of aminopyrrole moiety in kosinostatin biosynthesis. Chin J Chem. 2021;39. https://doi.org/10.1002/cjoc.20210525.

  68. Sasaki T, Igarashi Y, Saito N, Furumai T. Watasemycins A and B, new antibiotics produced by Streptomyces sp. TP-A0597. J Antibiot. 2002;55:249–55.

    Article  CAS  Google Scholar 

  69. Inahashi Y, et al. Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chem Sci. 2017;8:2823–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Furumai T, et al. TPU-0037-A, B, C and D, novel lydicamycin congeners with anti-MRSA activity from Streptomyces platensis TP-A0598. J Antibiot. 2002;55:873–80.

    Article  CAS  Google Scholar 

  71. Komaki H, Ichikawa N, Hosoyama A, Fujita N, Igarashi Y. Draft genome sequence of marine-derived Streptomyces sp. TP-A0598, a producer of anti-MRSA antibiotic lydicamycins. Stand Genom Sci. 2015;10:58.

    Article  Google Scholar 

  72. Komaki H, Hosoyama A, Igarashi Y, Tamura T. Streptomyces lydicamycinicus sp. nov. and its secondary metabolite biosynthetic gene clusters for polyketide and nonribosomal peptide compounds. Microorganisms 2020;8:370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Igarashi Y, et al. Two butenolides with PPARα agonistic activity from a marine-derived Streptomyces. J Antibiot. 2015;68:345–7.

    Article  CAS  Google Scholar 

  74. Karim MRU, et al. Nyuzenamides A and B: bicyclic peptides with antifungal and cytotoxic activity from a marine-derived Streptomyces sp. Org Lett. 2021;23:2109–13.

    Article  CAS  PubMed  Google Scholar 

  75. Komaki H, Igarashi Y, Tamura T. Taxonomic positions of a nyuzenamide-producer and its closely related strains. Microorganisms 2022;10:349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. An JS, et al. Nyuzenamide C, an antiangiogenic epoxy cinnamic acid-containing bicyclic peptide from a riverine Streptomyces sp. J Nat Prod. 2022;85:804–14.

    Article  CAS  PubMed  Google Scholar 

  77. Yang T, et al. Akazamicin, a cytotoxic aromatic polyketide from marine-derived Nonomuraea sp. J Antibiot. 2019;72:202–9.

    Article  CAS  Google Scholar 

  78. Zhang Z, et al. Nomimicins B-D, new tetronate-class polyketides from a marine-derived actinomycete of the genus Actinomadura. Beilstein J Org Chem. 2021;17:2194–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Igarashi Y, et al. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot. 2012;65:355–9.

    Article  CAS  Google Scholar 

  80. Igarashi Y, et al. Structure determination, biosynthetic origin, and total synthesis of akazaoxime, an enteromycin-class metabolite from a marine-derived actinomycete of the genus Micromonospora. J Org Chem. 2021;86:6528–37.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Z, et al. Kumemicinones A-G, cytotoxic angucyclinones from a deep sea-derived actinomycete of the genus Actinomadura. J Nat Prod. 2022;85:1098–108.

    Article  CAS  PubMed  Google Scholar 

  82. Harunari E, Bando M, Igarashi Y. Rausuquinone, a non-glycosylated pluramycin-class antibiotic from Rhodococcus. J Antibiot. 2022;75:86–91.

    Article  CAS  Google Scholar 

  83. Yamazaki Y, Kunimoto S, Ikeda D. Rakicidin A: a hypoxia-selective cytotoxin. Biol Pharm Bull. 2007;30:261–5.

    Article  CAS  PubMed  Google Scholar 

  84. Takeuchi M, et al. Rakicidin A effectively induces apoptosis in hypoxia adapted Bcr-Abl positive leukemic cells. Cancer Sci. 2011;102:591–6.

    Article  CAS  PubMed  Google Scholar 

  85. Sang F, et al. Structure-activity relationship study of rakicidins: Overcoming chronic myeloid leukemia resistance to Imatinib with 4-methylester-rakicidin A. J Med Chem. 2016;59:1184–96.

    Article  CAS  PubMed  Google Scholar 

  86. Chen J, et al. Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. Eur J Med Chem. 2018;151:601–27.

    Article  CAS  PubMed  Google Scholar 

  87. Villadsen NL, et al. Synthesis of ent-BE-43547A1 reveals a potent hypoxia-selective anticancer agent and uncovers the biosynthetic origin of the APD-CLD natural products. Nat Chem. 2017;9:264–72.

    Article  CAS  PubMed  Google Scholar 

  88. Igarashi Y, et al. Rakicidin D, an inhibitor of tumor cell invasion from marine-derived Streptomyces sp. J Antibiot. 2010;63:563–5.

    Article  CAS  Google Scholar 

  89. Oku N, et al. Complete stereochemistry and preliminary structure-activity relationship of rakicidin A, a hypoxia-selective cytotoxin from Micromonospora sp. J Nat Prod. 2014;77:2561–5.

    Article  CAS  PubMed  Google Scholar 

  90. Kitani S, et al. Rakicidin F, a new antibacterial cyclic depsipeptide from a marine sponge-derived Streptomyces sp. J Antibiot. 2018;71:139–41.

    Article  CAS  Google Scholar 

  91. Sang F, et al. Total synthesis and determination of the absolute configuration of rakicidin A. J Am Chem Soc. 2014;136:15787–91.

    Article  CAS  PubMed  Google Scholar 

  92. Yang Z, et al. Total synthesis and determination of the absolute configuration of vinylamycin. Org Lett 2015;17:5725–7.

    Article  CAS  PubMed  Google Scholar 

  93. Poulsen TB. Total synthesis of natural products containing enamine or enol ether derivatives. Acc Chem Res. 2021;54:1830–42.

    Article  CAS  PubMed  Google Scholar 

  94. Han F, et al. Total synthesis and determination of the absolute configuration of rakicidin C. Org Lett. 2021;23:7069–73.

    Article  CAS  PubMed  Google Scholar 

  95. Han F, et al. Total synthesis and stereochemical assignment of rakicidin F. Org Biomol Chem. 2022;20:4135–40.

    Article  CAS  PubMed  Google Scholar 

  96. Komaki H, et al. Draft genome sequence of Streptomyces sp. MWW064 for elucidating the rakicidin biosynthetic pathway. Stand Genom Sci. 2016;11:83.

    Article  Google Scholar 

  97. Komaki H, et al. Draft genome sequence of Micromonospora sp. DSW705 and distribution of biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4-pentadienoate in actinomycetes. Stand Genom Sci. 2016;11:84.

    Article  Google Scholar 

  98. Kim Y, et al. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar Drugs. 2014;12:4110–25.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Harunari E, et al. Hyaluromycin, a new hyaluronidase inhibitor of polyketide origin from marine Streptomyces sp. Mar Drugs. 2014;12:491–507.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kohi S, et al. Hyaluromycin, a novel hyaluronidase inhibitor, attenuates pancreatic cancer cell migration and proliferation. J Oncol. 2016;2016:9063087.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Harunari E, Imada C, Igarashi Y. Konamycins A and B and rubromycins CA1 and CA2, aromatic polyketides from the tunicate-derived Streptomyces hyaluromycini MB-PO13T. J Nat Prod. 2019;82:1609–15.

    Article  CAS  PubMed  Google Scholar 

  102. Hop DV, et al. Taxonomic and ecological studies of actinomycetes from Vietnam: isolation and genus-level diversity. J Antibiot. 2011;64:599–606.

    Article  CAS  Google Scholar 

  103. Igarashi Y, et al. Jomthonic acid, a modified amino acid from a soil-derived Streptomyces. J Nat Prod. 2012;75:986–90.

    Article  CAS  PubMed  Google Scholar 

  104. Yu L, et al. Jomthonic acids B and C, two new modified amino acids from Streptomyces sp. J Antibiot. 2014;67:345–7.

    Article  CAS  Google Scholar 

  105. García-Salcedo R, et al. Characterization of the jomthonic acids biosynthesis pathway and isolation of novel analogues in Streptomyces caniferus GUA-06-05-006A. Mar Drugs. 2018;16:259.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li F, Yang LC, Zhang J, Chen JS, Renata H. Stereoselective synthesis of β-branched aromatic α-amino acids by biocatalytic dynamic kinetic resolution. Angew Chem Int Ed Engl. 2021;60:17680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saito S, Fujimaki T, Panbangred W, Igarashi Y, Imoto M. Antarlides: a new type of androgen receptor (AR) antagonist that overcomes resistance to AR-targeted therapy. Angew Chem Int Ed Engl. 2016;55:2728–32.

    Article  CAS  PubMed  Google Scholar 

  108. Saito S, et al. Antarlides F-H, new members of the antarlide family produced by Streptomyces sp. BB47. J Antibiot. 2017;70:595–600.

    Article  CAS  Google Scholar 

  109. Imoto M, Fujimaki T, Saito S, Tashiro E. Androgen receptor antagonists produced by Streptomyces overcome resistance to enzalutamide. J Antibiot. 2021;74:706–16.

    Article  CAS  Google Scholar 

  110. Igarashi Y, et al. Nonthmicin, a polyether polyketide bearing a halogen-modified tetronate with neuroprotective and antiinvasive activity from Actinomadura sp. Org Lett. 2017;19:1406–9.

    Article  CAS  PubMed  Google Scholar 

  111. Komaki H, et al. Draft genome sequence of Actinomadura sp. K4S16 and elucidation of the nonthmicin biosynthetic pathway. J Genomics. 2020;8:53–61.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhang X, et al. Thioredoxin-1 regulates calcium homeostasis in MPP+/MPTP-induced Parkinson’s disease models. Eur J Neurosci. 2021;54:27–4837.

    Article  CAS  Google Scholar 

  113. Jacquemet G, et al. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat Commun. 2016;7:13297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Igarashi Y, et al. Prajinamide, a new modified peptide from a soil-derived Streptomyces. J Antibiot. 2012;65:157–9.

    Article  CAS  Google Scholar 

  115. Komaki H, Hosoyama A, Ichikawa N, Panbangred W, Igarashi Y. Draft genome sequence of Streptomyces sp. SPMA113, a prajinamide producer. Genome Announc. 2016;4:e01126–16.

    PubMed  PubMed Central  Google Scholar 

  116. Yu L, Trujillo ME, Miyanaga S, Saiki I, Igarashi Y. Campechic acids A and B: anti-invasive polyether polyketides from a soil-derived Streptomyces. J Nat Prod. 2014;77:976–82.

    Article  CAS  PubMed  Google Scholar 

  117. Isaka R, Yu L, Sasaki M, Igarashi Y, Fuwa H. Complete stereochemical assignment of campechic acids A and B. J Org Chem. 2016;81:3638–47.

    Article  CAS  PubMed  Google Scholar 

  118. Igarashi Y, et al. Abyssomicin I, a modified polycyclic polyketide from Streptomyces sp. CHI39. J Nat Prod. 2010;73:1943–6.

    Article  CAS  PubMed  Google Scholar 

  119. Komaki H, et al. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot. 2020;73:141–51.

    Article  CAS  Google Scholar 

  120. Desouky SE, et al. Secondary metabolites of actinomycetales as potent quorum sensing inhibitors targeting Gram-positive pathogens: in vitro and in silico study. Metabolites 2022;12:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsukimoto M, et al. Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J Nat Prod. 2011;74:2329–31.

    Article  CAS  PubMed  Google Scholar 

  122. Schleissner C, et al. Bacterial production of a pederin analogue by a free-living marine alphaproteobacterium. J Nat Prod. 2017;28:2170–3.

    Article  Google Scholar 

  123. McDonald LA, et al. Namenamicin, a new enediyne antitumor antibiotic from the marine ascidian Polysyncraton lithostrotum. J Am Chem Soc. 1996;118:10898–9.

    Article  CAS  Google Scholar 

  124. Oku N, Matsunaga S, Fusetani N. Shishijimicins A-C, novel enediyne antitumor antibiotics from the ascidian Didemnum proliferum. J Am Chem Soc. 2003;125:2044–5.

    Article  CAS  PubMed  Google Scholar 

  125. Waters AL, et al. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front Mar Sci. 2014;1:54.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Azumi M, et al. Bacilosarcins A and B, novel bioactive isocoumarins with unusual heterocyclic cores from the marine-derived bacterium Bacillus subtilis. Tetrahedron. 2008;64:6420–5.

    Article  CAS  Google Scholar 

  127. Boya CA, Herrera L, Guzman HM, Gutierrez M. Antiplasmodial activity of bacilosarcin A isolated from the octocoral-associated bacterium Bacillus sp. collected in Panama. J Pharm Bioallied Sci. 2012;4:66–9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Enomoto M, Kuwahara S. Total synthesis of bacilosarcins A and B. Angew Chem Int Ed Engl 2009;48:1144–8.

    Article  CAS  PubMed  Google Scholar 

  129. Igarashi Y, et al. Ulbactins F and G, polycyclic thiazoline derivatives with tumor cell migration inhibitory activity from Brevibacillus sp. Org Lett. 2016;18:1658–61.

    Article  CAS  PubMed  Google Scholar 

  130. Shapiro JA, Morrison KR, Chodisetty SS, Musaev DG, Wuest WM. Biologically inspired total synthesis of ulbactin F, an iron-binding natural product. Org Lett. 2018;20:5922–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sharma AR, et al. Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot. 2019;72:634–9.

    Article  Google Scholar 

  132. Sharma AR, Harunari E, Zhou T, Trianto A, Igarashi Y. Isolation and biosynthesis of an unsaturated fatty acid with unusual methylation pattern from a coral-associated bacterium Microbulbifer sp. Beilstein J Org Chem. 2019;15:2327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A-C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium Microbulbifer species. J Nat Prod. 2020;83:1295–9.

    Article  PubMed  Google Scholar 

  134. Lu S. et al. Bulbiferamide, an anti-trypanosomal hexapeptide cyclized via an N-acylindole linkage from a marine obligate Microbulbifer. J Nat Prod. 2023;86:1041–6.

  135. Jayanetti DR, Braun DR, Barns KJ, Rajski SR, Bugni TS. Bulbiferates A and B: antibacterial acetamidohydroxybenzoates from a marine proteobacterium, Microbulbifer sp. J Nat Prod. 2019;82:1930–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Leutou AS, et al. Nocarimidazoles A and B from a marine-derived actinomycete of the genus Nocardiopsis. J Nat Prod. 2015;78:2846–9.

    Article  CAS  PubMed  Google Scholar 

  137. Karim MRU, et al. Nocarimidazoles C and D, antimicrobial alkanoylimidazoles from a coral-derived actinomycete Kocuria sp.: application of 1JC,H coupling constants for the unequivocal determination of substituted imidazoles and stereochemical diversity of anteisoalkyl chains in microbial metabolites. Beilstein J Org Chem. 2020;16:2719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Karim MRU, et al. Marinoquinolones and marinobactoic acid: antimicrobial and cytotoxic ortho-dialkylbenzene-class metabolites produced by a marine obligate gammaproteobacterium of the genus Marinobacterium. J Nat Prod. 2022;85:1763–70.

    Article  Google Scholar 

  139. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol. 2020;70:5607–12. https://www.bacterio.net.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dictionary of Natural Products 31.2. CRC Press, Taylor & Francis Group. https://dnp.chemnetbase.com.

  141. antiSMASH bacterial version. https://antismash.secondarymetabolites.org.

  142. National Institute of Technology and Evaluation, Biological Resource Center https://www.nite.co.jp/en/nbrc/index/html.

  143. Inahashi Y, Matsumoto A, Danbara H, Ōmura S, Takahashi Y. Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol. 2010;60:2652–8.

    Article  CAS  PubMed  Google Scholar 

  144. Saito S, et al. Phytohabitols A-C, δ-lactone-terminated polyketides from an actinomycete of the genus Phytohabitans. J Nat Prod. 2022;85:1697–703.

    Article  CAS  PubMed  Google Scholar 

  145. Harunari E, et al. Bisprenyl naphthoquinone and chlorinated calcimycin congener bearing thiazole ring from an actinomycete of the genus Phytohabitans. J Antibiot. 2022;75:542–51.

    Article  CAS  Google Scholar 

  146. Triningsih DW, et al. Species-specific secondary metabolism by actinomycetes of the genus Phytohabitans and discovery of new pyranonaphthoquinones and isatin derivatives. J Antibiot 2023;76:249–59.

    Article  CAS  Google Scholar 

  147. Triningsih DW, et al. Cyclic enaminones and a 4-quinazolinone from an unidentified actinomycete of the family Micromonosporaceae. J Antibiot. 2022;75:610–8.

    Article  CAS  Google Scholar 

  148. Ara I, Kudo T. Krasilnikovia gen. nov., a new member of the family Micromonosporaceae and description of Krasilnikovia cinnamonea sp. nov. Actinomycetol. 2007;21:1–10.

    Article  CAS  Google Scholar 

  149. Lu S, et al. Krasilnikolides A and B and detalosylkrasilnikolide A, cytotoxic 20-membered macrolides from the genus Krasilnikovia: assignment of anomeric configuration by J-based configuration analysis. J Nat Prod. 2022;85:2796–803.

    Article  CAS  PubMed  Google Scholar 

  150. Asano K, Kawamoto I. Catellatospora, a new genus of the actinomycetales. Int J Syst Bacteriol. 1986;36:512–7.

    Article  Google Scholar 

  151. Liu C, et al. Catellatolactams A-C, plant growth-promoting ansamacrolactams from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;8:1993–9.

    Article  Google Scholar 

  152. Liu C, et al. Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora. J Antibiot. 2022;75:655–61.

    Article  CAS  Google Scholar 

  153. Ara I, et al. Pseudosporangium ferrugineum gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol. 2008;58:1644–52.

    Article  CAS  PubMed  Google Scholar 

  154. Saito S, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;16:1100–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

On the occasion of winning the Sumiki-Umezawa Memorial Award 2022 from the Japan Antibiotics Research Association, I would like to express my sincere gratitude to Prof. Toshikazu Oki, Prof. Tamotsu Furumai, Dr. Naoya Oku, Dr. Enjuro Harunari, Prof. Daisuke Urabe, and Dr. Keisuke Fukaya at Toyama Prefectural University, Prof. Hiroyasu Onaka at University of Tokyo, and all the students, research fellows, and collaborators whose names are listed in my publications. I also would like to give a special thanks to Prof. Kenji Mori at University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yasuhiro Igarashi was awarded the Sumiki-Umezawa Memorial Award from the Japan Antibiotics Research Association in 2022. This review article is partly based on his award-winning research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igarashi, Y. Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot 76, 365–383 (2023). https://doi.org/10.1038/s41429-023-00625-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00625-y

Search

Quick links