Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IKAROS: from chromatin organization to transcriptional elongation control

Abstract

IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IKZF family of transcription factors.
Fig. 2: IKAROS isoforms and effect of dimerization.
Fig. 3: IKAROS missense mutations in hematopoietic disorders.
Fig. 4: IKAROS interactome.
Fig. 5: IKAROS post-translational modifications.
Fig. 6: IKAROS and AIOLOS degradation upon treatment with immunomodulatory imide drugs (IMiDs).
Fig. 7: Crosstalk between IKAROS missense mutations, PTMs and interactome.
Fig. 8: The influence of IKAROS over gene regulation extends from chromatin organization to transcriptional elongation.

Similar content being viewed by others

References

  1. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 1992;258:808–12.

    Article  CAS  PubMed  Google Scholar 

  2. Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998;12:782–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol. 1998;8:508–15.

    Article  CAS  PubMed  Google Scholar 

  4. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. Embo J. 1997;16:2004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem. 2000;275:38347–54.

    Article  CAS  PubMed  Google Scholar 

  6. Sjostedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367:eaay5947.

    Article  PubMed  Google Scholar 

  7. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteom. 2005;4:1920–32.

    Article  CAS  Google Scholar 

  8. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  9. Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. 2019;366:eaax9198.

    Article  CAS  PubMed  Google Scholar 

  10. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. Embo J. 1996;15:5358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Javed A, Santos-Franca PL, Mattar P, Cui A, Kassem F, Cayouette M. Ikaros family proteins redundantly regulate temporal patterning in the developing mouse retina. Development. 2023;150:dev200436.

    Article  CAS  PubMed  Google Scholar 

  12. Georgopoulos K. The making of a lymphocyte: the choice among disparate cell fates and the IKAROS enigma. Genes Dev. 2017;31:439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matthias P, Rolink AG. Transcriptional networks in developing and mature B cells. Nat Rev Immunol. 2005;5:497–508.

    Article  CAS  PubMed  Google Scholar 

  14. Shahin T, Kuehn HS, Shoeb MR, Gawriyski L, Giuliani S, Repiscak P, et al. Germline biallelic mutation affecting the transcription factor Helios causes pleiotropic defects of immunity. Sci Immunol. 2021;6:eabe3981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M, et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol. 2014;15:283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14:8292–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Koipally J, Georgopoulos K. Ikaros-CtIP interactions do not require C-terminal binding protein and participate in a deacetylase-independent mode of repression. J Biol Chem. 2002;277:23143–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ferreiros-Vidal I, Carroll T, Taylor B, Terry A, Liang Z, Bruno L, et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood. 2013;121:1769–82.

    Article  CAS  PubMed  Google Scholar 

  19. Geimer Le Lay AS, Oravecz A, Mastio J, Jung C, Marchal P, Ebel C, et al. The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells. Sci Signal. 2014;7:ra28.

    Article  PubMed  Google Scholar 

  20. Kim HJ, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME, et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science. 2015;350:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Jackson AF, Naito T, Dose M, Seavitt J, Liu F, et al. Harnessing of the nucleosome-remodeling-deacetylase complex controls lymphocyte development and prevents leukemogenesis. Nat Immunol. 2011;13:86–94.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koipally J, Heller EJ, Seavitt JR, Georgopoulos K. Unconventional potentiation of gene expression by Ikaros. J Biol Chem. 2002;277:13007–15.

    Article  CAS  PubMed  Google Scholar 

  23. Marke R, van Leeuwen FN, Scheijen B. The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2018;103:565–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caballero R, Setien F, Lopez-Serra L, Boix-Chornet M, Fraga MF, Ropero S, et al. Combinatorial effects of splice variants modulate function of Aiolos. J Cell Sci. 2007;120:2619–30.

    Article  CAS  PubMed  Google Scholar 

  25. Payne KJ, Huang G, Sahakian E, Zhu JY, Barteneva NS, Barsky LW, et al. Ikaros isoform x is selectively expressed in myeloid differentiation. J Immunol. 2003;170:3091–8.

    Article  CAS  PubMed  Google Scholar 

  26. Klug CA, Morrison SJ, Masek M, Hahm K, Smale ST, Weissman IL. Hematopoietic stem cells and lymphoid progenitors express different Ikaros isoforms, and Ikaros is localized to heterochromatin in immature lymphocytes. Proc Natl Acad Sci USA. 1998;95:657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Gulino A, Screpanti I. Notch and Ikaros: not only converging players in T cell leukemia. Cell Cycle. 2007;6:2730–4.

    Article  CAS  PubMed  Google Scholar 

  28. McCarty AS, Kleiger G, Eisenberg D, Smale ST. Selective dimerization of a C2H2 zinc finger subfamily. Mol Cell. 2003;11:459–70.

    Article  CAS  PubMed  Google Scholar 

  29. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–74.

    Article  CAS  PubMed  Google Scholar 

  30. Rebollo A, Schmitt C. Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol. 2003;81:171–5.

    Article  CAS  PubMed  Google Scholar 

  31. Heizmann B, Kastner P, Chan S. The Ikaros family in lymphocyte development. Curr Opin Immunol. 2018;51:14–23.

    Article  CAS  PubMed  Google Scholar 

  32. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE, et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol. 2013;14:1073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arenzana TL, Schjerven H, Smale ST. Regulation of gene expression dynamics during developmental transitions by the Ikaros transcription factor. Genes Dev. 2015;29:1801–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lo K, Landau NR, Smale ST. LyF-1, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte-specific genes. Mol Cell Biol. 1991;11:5229–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Thompson EC, Cobb BS, Sabbattini P, Meixlsperger S, Parelho V, Liberg D, et al. Ikaros DNA-binding proteins as integral components of B cell developmental-stage-specific regulatory circuits. Immunity. 2007;26:335–44.

    Article  CAS  PubMed  Google Scholar 

  36. Gomez-del Arco P, Kashiwagi M, Jackson AF, Naito T, Zhang J, Liu F, et al. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis. Immunity. 2010;33:685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ng SY, Yoshida T, Zhang J, Georgopoulos K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity. 2009;30:493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Oravecz A, Apostolov A, Polak K, Jost B, Le Gras S, Chan S, et al. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2. Nat Commun. 2015;6:8823.

    Article  CAS  PubMed  Google Scholar 

  39. Kashiwagi M, Figueroa DS, Ay F, Morgan BA, Georgopoulos K. A double-negative thymocyte-specific enhancer augments Notch1 signaling to direct early T cell progenitor expansion, lineage restriction and beta-selection. Nat Immunol. 2022;23:1628–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mullighan C, Downing J. Ikaros and acute leukemia. Leuk Lymphoma. 2008;49:847–9.

    Article  PubMed  Google Scholar 

  41. Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128:3071–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W, Zhang H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018;33:937–48 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuehn HS, Niemela JE, Stoddard J, Mannurita SC, Shahin T, Goel S, et al. Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies. Blood. 2021;137:349–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nunes-Santos CJ, Kuehn HS, Rosenzweig SD. IKAROS family zinc finger 1-associated diseases in primary immunodeficiency patients. Immunol Allergy Clin North Am. 2020;40:461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yoshida N, Sakaguchi H, Muramatsu H, Okuno Y, Song C, Dovat S, et al. Germline IKAROS mutation associated with primary immunodeficiency that progressed to T-cell acute lymphoblastic leukemia. Leukemia. 2017;31:1221–3.

    Article  CAS  PubMed  Google Scholar 

  46. Lyon de Ana C, Arakcheeva K, Agnihotri P, Derosia N, Winandy S. Lack of ikaros deregulates inflammatory gene programs in T cells. J Immunol. 2019;202:1112–23.

    Article  CAS  PubMed  Google Scholar 

  47. Rivellese F, Manou-Stathopoulou S, Mauro D, Goldmann K, Pyne D, Rajakariar R, et al. Effects of targeting the transcription factors Ikaros and Aiolos on B cell activation and differentiation in systemic lupus erythematosus. Lupus Sci Med. 2021;8:e000445.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kuehn HS, Boast B, Rosenzweig SD. Inborn errors of human IKAROS: LOF and GOF variants associated with primary immunodeficiency. Clin Exp Immunol. 2023;212:129–36.

    Article  PubMed  Google Scholar 

  49. Sun L, Goodman PA, Wood CM, Crotty ML, Sensel M, Sather H, et al. Expression of aberrantly spliced oncogenic ikaros isoforms in childhood acute lymphoblastic leukemia. J Clin Oncol. 1999;17:3753–66.

    Article  CAS  PubMed  Google Scholar 

  50. Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 1999;96:680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beer PA, Knapp DJ, Kannan N, Miller PH, Babovic S, Bulaeva E, et al. A dominant-negative isoform of IKAROS expands primitive normal human hematopoietic cells. Stem Cell Rep. 2014;3:841–57.

    Article  CAS  Google Scholar 

  52. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453:110–4.

    Article  CAS  PubMed  Google Scholar 

  53. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST. Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev. 2000;14:2146–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114:2159–67.

    Article  CAS  PubMed  Google Scholar 

  55. Tonnelle C, Bardin F, Maroc C, Imbert AM, Campa F, Dalloul A, et al. Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage. Blood. 2001;98:2673–80.

    Article  CAS  PubMed  Google Scholar 

  56. Beer PA, Knapp DJ, Miller PH, Kannan N, Sloma I, Heel K, et al. Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression. Blood. 2015;125:504–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dupuis A, Gaub MP, Legrain M, Drenou B, Mauvieux L, Lutz P, et al. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia. 2013;27:503–7.

    Article  CAS  PubMed  Google Scholar 

  58. Iacobucci I, Iraci N, Messina M, Lonetti A, Chiaretti S, Valli E, et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One. 2012;7:e40934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Joshi I, Yoshida T, Jena N, Qi X, Zhang J, Van Etten RA, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol. 2014;15:294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res. 2013;3:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–64.

    Article  CAS  PubMed  Google Scholar 

  62. Koipally J, Georgopoulos K. Ikaros interactions with CtBP reveal a repression mechanism that is independent of histone deacetylase activity. J Biol Chem. 2000;275:19594–602.

    Article  CAS  PubMed  Google Scholar 

  63. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol. 2003;4:168–74.

    Article  CAS  PubMed  Google Scholar 

  64. Yoshida T, Ng SY, Zuniga-Pflucker JC, Georgopoulos K. Early hematopoietic lineage restrictions directed by Ikaros. Nat Immunol. 2006;7:382–91.

    Article  CAS  PubMed  Google Scholar 

  65. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79:143–56.

    Article  CAS  PubMed  Google Scholar 

  66. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5:537–49.

    Article  CAS  PubMed  Google Scholar 

  67. Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107:435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bottardi S, Ross J, Bourgoin V, Fotouhi-Ardakani N, Affar el B, Trudel M, et al. Ikaros and GATA-1 combinatorial effect is required for silencing of human gamma-globin genes. Mol Cell Biol. 2009;29:1526–37.

    Article  CAS  PubMed  Google Scholar 

  69. Cytlak U, Resteu A, Bogaert D, Kuehn HS, Altmann T, Gennery A, et al. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nat Commun. 2018;9:1239.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dumortier A, Kirstetter P, Kastner P, Chan S. Ikaros regulates neutrophil differentiation. Blood. 2003;101:2219–26.

    Article  CAS  PubMed  Google Scholar 

  71. Malinge S, Thiollier C, Chlon TM, Dore LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121:2440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Oh KS, Gottschalk RA, Lounsbury NW, Sun J, Dorrington MG, Baek S, et al. Dual roles for ikaros in regulation of macrophage chromatin state and inflammatory gene expression. J Immunol. 2018;201:757–71.

    Article  CAS  PubMed  Google Scholar 

  73. Toubai T, Sun Y, Tawara I, Friedman A, Liu C, Evers R, et al. Ikaros-Notch axis in host hematopoietic cells regulates experimental graft-versus-host disease. Blood. 2011;118:192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Powell MD, Read KA, Sreekumar BK, Oestreich KJ. Ikaros zinc finger transcription factors: regulators of cytokine signaling pathways and CD4(+) T helper cell differentiation. Front Immunol. 2019;10:1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev. 2021;300:82–99.

    Article  CAS  PubMed  Google Scholar 

  76. Cippitelli M, Stabile H, Kosta A, Petillo S, Gismondi A, Santoni A, et al. Role of Aiolos and Ikaros in the antitumor and immunomodulatory activity of IMiDs in multiple myeloma: better to lose than to find them. Int J Mol Sci. 2021;22:1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koipally J, Renold A, Kim J, Georgopoulos K. Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. Embo J. 1999;18:3090–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sabbattini P, Lundgren M, Georgiou A, Chow C, Warnes G, Dillon N. Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. Embo J. 2001;20:2812–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou N, Gutierrez-Uzquiza A, Zheng XY, Chang R, Vogl DT, Garfall AL, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;33:2006–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bottardi S, Mavoungou L, Bourgoin V, Mashtalir N, Affar el B, Milot E. Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol. 2013;33:3064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell. 2011;144:296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ross J, Mavoungou L, Bresnick EH, Milot E. GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis. Mol Cell Biol. 2012;32:3624–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bottardi S, Zmiri FA, Bourgoin V, Ross J, Mavoungou L, Milot E. Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation. Nucleic Acids Res. 2011;39:3505–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson KD, Grass JA, Boyer ME, Kiekhaefer CM, Blobel GA, Weiss MJ, et al. Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proc Natl Acad Sci USA. 2002;99:11760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005;17:453–62.

    Article  CAS  PubMed  Google Scholar 

  86. Sridharan R, Smale ST. Predominant interaction of both Ikaros and Helios with the NuRD complex in immature thymocytes. J Biol Chem. 2007;282:30227–38.

    Article  CAS  PubMed  Google Scholar 

  87. Kim J, Sif S, Jones B, Jackson A, Koipally J, Heller E, et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity. 1999;10:345–55.

    Article  CAS  PubMed  Google Scholar 

  88. Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR, et al. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol. 2006;26:209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bottardi S, Mavoungou L, Milot E. IKAROS: a multifunctional regulator of the polymerase II transcription cycle. Trends Genet. 2015;31:500–8.

    Article  CAS  PubMed  Google Scholar 

  90. Lemarie M, Bottardi S, Mavoungou L, Pak H, Milot E. IKAROS is required for the measured response of NOTCH target genes upon external NOTCH signaling. PLoS Genet. 2021;17:e1009478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer. 2011;11:588–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nitarska J, Smith JG, Sherlock WT, Hillege MM, Nott A, Barshop WD, et al. A functional switch of NuRD chromatin remodeling complex subunits regulates mouse cortical development. Cell Rep. 2016;17:1683–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Loughran SJ, Comoglio F, Hamey FK, Giustacchini A, Errami Y, Earp E, et al. Mbd3/NuRD controls lymphoid cell fate and inhibits tumorigenesis by repressing a B cell transcriptional program. J Exp Med. 2017;214:3085–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013;14:R119.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yildirim O, Li R, Hung JH, Chen PB, Dong X, Ee LS, et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell. 2011;147:1498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bottardi S, Mavoungou L, Pak H, Daou S, Bourgoin V, Lakehal YA, et al. The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis. PLoS Genet. 2014;10:e1004827.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang W, Aubert A, Gomez de Segura JM, Karuppasamy M, Basu S, Murthy AS, et al. The nucleosome remodeling and deacetylase complex NuRD is built from preformed catalytically active sub-modules. J Mol Biol. 2016;428:2931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Low JK, Webb SR, Silva AP, Saathoff H, Ryan DP, Torrado M, et al. CHD4 is a peripheral component of the nucleosome remodeling and deacetylase complex. J Biol Chem. 2016;291:15853–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang T, Wei G, Millard CJ, Fischer R, Konietzny R, Kessler BM, et al. A variant NuRD complex containing PWWP2A/B excludes MBD2/3 to regulate transcription at active genes. Nat Commun. 2018;9:3798.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, et al. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. J Immunol. 2011;186:6368–77.

    Article  CAS  PubMed  Google Scholar 

  101. O’Neill DW, Schoetz SS, Lopez RA, Castle M, Rabinowitz L, Shor E, et al. An ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol Cell Biol. 2000;20:7572–82.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bonifer C, Cockerill PN. Chromatin priming of genes in development: concepts, mechanisms and consequences. Exp Hematol. 2017;49:1–8.

    Article  CAS  PubMed  Google Scholar 

  103. Dillon N. Factor mediated gene priming in pluripotent stem cells sets the stage for lineage specification. Bioessays. 2012;34:194–204.

    Article  CAS  PubMed  Google Scholar 

  104. Fisher CL, Fisher AG. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev. 2011;21:140–6.

    Article  CAS  PubMed  Google Scholar 

  105. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.

    Article  CAS  PubMed  Google Scholar 

  106. Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013;27:1318–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mohd-Sarip A, Teeuwssen M, Bot AG, De Herdt MJ, Willems SM, Baatenburg de Jong RJ, et al. DOC1-dependent recruitment of NURD reveals antagonism with SWI/SNF during epithelial-mesenchymal transition in oral cancer cells. Cell Rep. 2017;20:61–75.

    Article  CAS  PubMed  Google Scholar 

  108. Bornelov S, Reynolds N, Xenophontos M, Gharbi S, Johnstone E, Floyd R, et al. The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol Cell. 2018;71:56–72.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ho L, Miller EL, Ronan JL, Ho WQ, Jothi R, Crabtree GR. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol. 2011;13:903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. King HW, Klose RJ. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. Elife. 2017;6:e22631.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li Y, Schulz VP, Deng C, Li G, Shen Y, Tusi BK, et al. Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res. 2016;44:7173–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bottardi S, Aumont A, Grosveld F, Milot E. Developmental stage-specific epigenetic control of human beta-globin gene expression is potentiated in hematopoietic progenitor cells prior to their transcriptional activation. Blood. 2003;102:3989–97.

    Article  CAS  PubMed  Google Scholar 

  113. Keys JR, Tallack MR, Zhan Y, Papathanasiou P, Goodnow CC, Gaensler KM, et al. A mechanism for Ikaros regulation of human globin gene switching. Br J Haematol. 2008;141:398–406.

    CAS  PubMed  Google Scholar 

  114. van Lohuizen M. The trithorax-group and polycomb-group chromatin modifiers: implications for disease. Curr Opin Genet Dev. 1999;9:355–61.

    Article  PubMed  Google Scholar 

  115. Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, et al. CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell. 2017;31:653–68.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Marcon E, Ni Z, Pu S, Turinsky AL, Trimble SS, Olsen JB, et al. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation. Cell Rep. 2014;8:297–310.

    Article  CAS  PubMed  Google Scholar 

  117. Hoffmeister H, Fuchs A, Erdel F, Pinz S, Grobner-Ferreira R, Bruckmann A, et al. CHD3 and CHD4 form distinct NuRD complexes with different yet overlapping functionality. Nucleic Acids Res. 2017;45:10534–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Oliviero G, Brien GL, Waston A, Streubel G, Jerman E, Andrews D, et al. Dynamic protein interactions of the polycomb repressive complex 2 during differentiation of pluripotent cells. Mol Cell Proteom. 2016;15:3450–60.

    Article  CAS  Google Scholar 

  119. Wang J, Yu X, Gong W, Liu X, Park KS, Ma A, et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol. 2022;24:384–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D, O’Shaughnessy A, et al. NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell. 2012;10:583–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bottardi S, Ross J, Pierre-Charles N, Blank V, Milot E. Lineage-specific activators affect beta-globin locus chromatin in multipotent hematopoietic progenitors. Embo J. 2006;25:3586–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12:7–18.

    Article  PubMed  Google Scholar 

  123. Shilatifard A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol. 2008;20:341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 2011;25:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ding Y, Zhang B, Payne JL, Song C, Ge Z, Gowda C, et al. Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity. Leukemia. 2019;33:2720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zaret KS. Pioneer transcription factors initiating gene network changes. Annu Rev Genet. 2020;54:367–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13:720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Core LJ, Waterfall JJ, Gilchrist DA, Fargo DC, Kwak H, Adelman K, et al. Defining the status of RNA polymerase at promoters. Cell Rep. 2012;2:1025–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Romano G, Giordano A. Role of the cyclin-dependent kinase 9-related pathway in mammalian gene expression and human diseases. Cell Cycle. 2008;7:3664–8.

    Article  CAS  PubMed  Google Scholar 

  130. Saunders A, Core LJ, Lis JT. Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol. 2006;7:557–67.

    Article  CAS  PubMed  Google Scholar 

  131. Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem. 2012;81:119–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Krueger BJ, Varzavand K, Cooper JJ, Price DH. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS One. 2010;5:e12335.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Li Q, Price JP, Byers SA, Cheng D, Peng J, Price DH. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem. 2005;280:28819–26.

    Article  CAS  PubMed  Google Scholar 

  134. Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F, Nguyen VT, et al. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J. 2004;23:2608–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell. 2003;12:971–82.

    Article  CAS  PubMed  Google Scholar 

  136. Chen R, Liu M, Li H, Xue Y, Ramey WN, He N, et al. PP2B and PP1alpha cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev. 2008;22:1356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Diribarne G, Bensaude O. 7SK RNA, a non-coding RNA regulating P-TEFb, a general transcription factor. RNA Biol. 2009;6:122–8.

    Article  CAS  PubMed  Google Scholar 

  138. Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, et al. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem. 2009;284:13869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Orphanides G, LeRoy G, Chang CH, Luse DS, Reinberg DFACT. a factor that facilitates transcript elongation through nucleosomes. Cell. 1998;92:105–16.

    Article  CAS  PubMed  Google Scholar 

  140. Murawska M, Brehm A. CHD chromatin remodelers and the transcription cycle. Transcription. 2011;2:244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, et al. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature. 2012;489:452–5.

    Article  CAS  PubMed  Google Scholar 

  142. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005;123:581–92.

    Article  CAS  PubMed  Google Scholar 

  143. Li B, Gogol M, Carey M, Pattenden SG, Seidel C, Workman JL. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 2007;21:1422–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V. Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.

    Article  CAS  PubMed  Google Scholar 

  145. Gomez-del Arco P, Koipally J, Georgopoulos K. Ikaros SUMOylation: switching out of repression. Mol Cell Biol. 2005;25:2688–97.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Apostolov A, Litim-Mecheri I, Oravecz A, Goepp M, Kirstetter P, Marchal P, et al. Sumoylation inhibits the growth suppressive properties of Ikaros. PLoS One. 2016;11:e0157767.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell. 1997;91:845–54.

    Article  CAS  PubMed  Google Scholar 

  148. Li Z, Song C, Ouyang H, Lai L, Payne KJ, Dovat S. Cell cycle-specific function of Ikaros in human leukemia. Pediatr Blood Cancer. 2012;59:69–76.

    Article  CAS  PubMed  Google Scholar 

  149. Dovat S, Ronni T, Russell D, Ferrini R, Cobb BS, Smale ST. A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev. 2002;16:2985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gomez-del Arco P, Maki K, Georgopoulos K. Phosphorylation controls Ikaros’s ability to negatively regulate the G(1)-S transition. Mol Cell Biol. 2004;24:2797–807.

    Article  CAS  PubMed  Google Scholar 

  151. Gurel Z, Ronni T, Ho S, Kuchar J, Payne KJ, Turk CW, et al. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem. 2008;283:8291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ma H, Qazi S, Ozer Z, Zhang J, Ishkhanian R, Uckun FM. Regulatory phosphorylation of Ikaros by Bruton’s tyrosine kinase. PLoS One. 2013;8:e71302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Uckun FM, Ma H, Zhang J, Ozer Z, Dovat S, Mao C, et al. Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros. Proc Natl Acad Sci USA. 2012;109:18072–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science. 2010;327:1345–50.

    Article  CAS  PubMed  Google Scholar 

  155. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br J Haematol. 2014;164:811–21.

    Article  CAS  PubMed  Google Scholar 

  156. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    Article  PubMed  Google Scholar 

  157. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.

    Article  CAS  PubMed  Google Scholar 

  158. Bjorklund CC, Lu L, Kang J, Hagner PR, Havens CG, Amatangelo M, et al. Rate of CRL4(CRBN) substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood. Cancer J. 2015;5:e354.

    CAS  Google Scholar 

  159. Shi CX, Kortum KM, Zhu YX, Jedlowski P, Bruins L, Braggio E, et al. Proteasome inhibitors block Ikaros degradation by lenalidomide in multiple myeloma. Haematologica. 2015;100:e315–7.

    PubMed  PubMed Central  Google Scholar 

  160. Fecteau JF, Corral LG, Ghia EM, Gaidarova S, Futalan D, Bharati IS, et al. Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21(WAF1/Cip1)-dependent mechanism independent of functional p53. Blood. 2014;124:1637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ge Z, Song C, Ding Y, Tan BH, Desai D, Sharma A, et al. Dual targeting of MTOR as a novel therapeutic approach for high-risk B-cell acute lymphoblastic leukemia. Leukemia. 2021;35:1267–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hagner PR, Chiu H, Chopra VS, Colombo M, Patel N, Estevez MO, et al. Interactome of Aiolos/Ikaros Reveals Combination Rationale of Cereblon Modulators with HDAC Inhibitors in DLBCL. Clin Cancer Res. 2022;28:3367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sanchez-Luis E, Joaquin-Garcia A, Campos-Laborie FJ, Sanchez-Guijo F, Rivas JL. Deciphering master gene regulators and associated networks of human mesenchymal stromal cells. Biomolecules. 2020;10:557.

  164. Van Dessel N, Beke L, Gornemann J, Minnebo N, Beullens M, Tanuma N, et al. The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res. 2010;38:7500–12.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Hammond-Martel I, Yu H, Affar EB. Roles of ubiquitin signaling in transcription regulation. Cell Signal. 2012;24:410–21.

    Article  CAS  PubMed  Google Scholar 

  166. Francis OL, Payne JL, Su RJ, Payne KJ. Regulator of myeloid differentiation and function: the secret life of Ikaros. World J Biol Chem. 2011;2:119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D7.

    Article  CAS  PubMed  Google Scholar 

  168. Groth DJ, Lakkaraja MM, Ferreira JO, Feuille EJ, Bassetti JA, Kaicker SM. Management of chronic immune thrombocytopenia and presumed autoimmune hepatitis in a child with IKAROS haploinsufficiency. J Clin Immunol. 2020;40:653–7.

    Article  PubMed  Google Scholar 

  169. Lu G, Weng S, Matyskiela M, Zheng X, Fang W, Wood S, et al. UBE2G1 governs the destruction of cereblon neomorphic substrates. Elife. 2018;7:e40958.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, et al. Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009;2:ra46.

    Article  PubMed  Google Scholar 

  171. Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun. 2015;6:6758.

    Article  CAS  PubMed  Google Scholar 

  172. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, et al. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods. 2013;10:634–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Akimov V, Barrio-Hernandez I, Hansen SVF, Hallenborg P, Pedersen AK, Bekker-Jensen DB, et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol. 2018;25:631–40.

    Article  CAS  PubMed  Google Scholar 

  174. Udeshi ND, Svinkina T, Mertins P, Kuhn E, Mani DR, Qiao JW, et al. Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteom. 2013;12:825–31.

    Article  CAS  Google Scholar 

  175. Giansanti P, Stokes MP, Silva JC, Scholten A, Heck AJ. Interrogating cAMP-dependent kinase signaling in Jurkat T cells via a protein kinase A targeted immune-precipitation phosphoproteomics approach. Mol Cell Proteom. 2013;12:3350–9.

    Article  CAS  Google Scholar 

  176. Weber C, Schreiber TB, Daub H. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J Proteom. 2012;75:1343–56.

    Article  CAS  Google Scholar 

  177. Trost M, Sauvageau M, Herault O, Deleris P, Pomies C, Chagraoui J, et al. Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia. Blood. 2012;120:e17–27.

    Article  CAS  PubMed  Google Scholar 

  178. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Cho SJ, Kang H, Kim MY, Lee JE, Kim SJ, Nam SY, et al. Site-specific phosphorylation of Ikaros induced by low-dose ionizing radiation regulates cell cycle progression of B lymphoblast through CK2 and AKT activation. Int J Radiat Oncol Biol Phys. 2016;94:1207–18.

    Article  CAS  PubMed  Google Scholar 

  180. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143:1174–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Petzold G, Fischer ES, Thoma NH. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature. 2016;532:127–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the laboratory members for useful discussions.

Funding

Funding

The author’s work is supported by grants from the Canadian Institute of Health Research (CIHR PJT - 180491) held by EM and by the the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2021-04110) held by EBA; MA was supported by the internship awards from NSERC and from PREMIER of the faculty of Medicine, Université de Montréal.

Author information

Authors and Affiliations

Authors

Contributions

SB, MA, EBA, and EM, designed and wrote the manuscript. NQ, ACR and ML participate in the writing of specific sections of the manuscript and with Table 1. The authors approved the final manuscript.

Corresponding authors

Correspondence to El Bachir Affar or Eric Milot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Affar, M., Bottardi, S., Quansah, N. et al. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ (2023). https://doi.org/10.1038/s41418-023-01212-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41418-023-01212-2

Search

Quick links