Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptotic caspase-7 activation inhibits non-canonical pyroptosis by GSDMB cleavage

Abstract

GSDMB is associated with several inflammatory diseases, such as asthma, sepsis and colitis. GZMA is released by cytotoxic lymphocytes and cleaves GSDMB at the K244 site and to induce GSDMB N-terminus dependent pyroptosis. This cleavage of GSDMB is noncell autonomous. In this study, we demonstrated that the GSDMB-N domain (1-91 aa) was important for a novel cell-autonomous function and that GSDMB could bind caspase-4 and promote noncanonical pyroptosis. Furthermore, activated caspase-7 cleaved GSDMB at the D91 site to block GSDMB-mediated promotion of noncanonical pyroptosis during apoptosis. Mechanistically, the cleaved GSDMB-C-terminus (92-417 aa) binds to the GSDMB-N-terminus (1-91 aa) to block the function of GSDMB. During E. coli and S. Typhimurium infection, inhibition of the caspase-7/GSDMB axis resulted in more pyroptotic cells. Furthermore, in a septic mouse model, caspase-7 inhibition or deficiency in GSDMB-transgenic mice led to more severe disease phenotypes. Overall, we demonstrate that apoptotic caspase-7 activation inhibits non-canonical pyroptosis by cleaving GSDMB and provide new targets for sepsis therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GSDMB is cleaved during apoptosis.
Fig. 2: Apoptosis inhibits non-canonical pyroptosis.
Fig. 3: Apoptotic inhibition of non-canonical pyroptosis is dependent on caspase-7.
Fig. 4: Caspase-7-mediated GSDMB cleavage is necessary for the apoptotic inhibition of non-canonical pyroptosis.
Fig. 5: GSDMB cleaved at D91 site cannot promote the enzyme activity of caspase-4.
Fig. 6: GSDMB C-terminus (92-417 aa) can bind to GSDMB N-terminus (1-91 aa) to block its function.
Fig. 7: Apoptotic inhibition of non-canonical pyroptosis is a self-protective pathway during bacterial infection.
Fig. 8: Conclusion.

Similar content being viewed by others

Data availability

The data sets used in the current study are available from the corresponding author upon reasonable request. The western blot data are provided in Supplementary Materials (Original western blots).

References

  1. He H, Yi L, Zhang B, Yan B, Xiao M, Ren J, et al. USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway. Int J Biol Sci. 2021;17:2417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carl-McGrath S, Schneider-Stock R, Ebert M, Röcken C. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology. 2008;40:13–24.

    Article  CAS  PubMed  Google Scholar 

  3. Molina-Crespo Á, Cadete A, Sarrio D, Gámez-Chiachio M, Martinez L, Chao K, et al. Intracellular delivery of an antibody targeting gasdermin-B reduces HER2 breast cancer aggressiveness. Clin Cancer Res. 2019;25:4846–58.

    Article  CAS  PubMed  Google Scholar 

  4. Söderman J, Berglind L, Almer S. Gene expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed Res Int. 2015;2015:834805.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li X, Christenson SA, Modena B, Li H, Busse WW, Castro M, et al. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. J Allergy Clin Immunol. 2021;147:894–909.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, et al. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol. 2019;11:496–508.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368:eaaz7548.

    Article  CAS  PubMed  Google Scholar 

  8. Hansen JM, de Jong MF, Wu Q, Zhang LS, Heisler DB, Alto LT, et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell. 2021;184:3178–91.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 2012;490:288–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C, Stuart LM, et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell. 2012;150:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Q, Zhang S, Sun Z, Guo X, Zhou H. E3 ubiquitin ligase Nedd4 is a key negative regulator for non-canonical inflammasome activation. Cell Death Differ. 2019;26:2386–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song F, Hou J, Chen Z, Cheng B, Lei R, Cui P, et al. Sphingosine-1-phosphate receptor 2 signaling promotes caspase-11-dependent macrophage pyroptosis and worsens Escherichia coli sepsis outcome. Anesthesiology. 2018;129:311–20.

    Article  CAS  PubMed  Google Scholar 

  13. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, et al. Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol. 2011;195:931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chao KL, Kulakova L, Herzberg O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc Natl Acad Sci USA. 2017;114:E1128–E37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belmokhtar CA, Hillion J, Ségal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 2001;20:3354–62.

    Article  CAS  PubMed  Google Scholar 

  16. Johansson AC, Steen H, Ollinger K, Roberg K. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ. 2003;10:1253–9.

    Article  CAS  PubMed  Google Scholar 

  17. Schwarz N, Tumpara S, Wrenger S, Ercetin E, Hamacher J, Welte T, et al. Alpha1-antitrypsin protects lung cancer cells from staurosporine-induced apoptosis: the role of bacterial lipopolysaccharide. Sci Rep. 2020;10:9563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, et al. Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun. 2022;13:250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Niu H, Zhao ZJ, Fu X, Wang Y, Zhang X, et al. CRISPR/Cas9 Knockout of Bak Mediates Bax Translocation to Mitochondria in response to TNFα/CHX-induced Apoptosis. Biomed Res Int. 2019;2019:9071297.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li C, Chen L, Song M, Fang Z, Zhang L, Coffie JW, et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide-induced apoptosis by regulating autophagy. Arch Pharm Res. 2020;43:863–74.

    Article  CAS  PubMed  Google Scholar 

  21. Gerlic M, Horowitz J, Horowitz S. Mycoplasma fermentans inhibits tumor necrosis factor alpha-induced apoptosis in the human myelomonocytic U937 cell line. Cell Death Differ. 2004;11:1204–12.

    Article  CAS  PubMed  Google Scholar 

  22. O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13:1437–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mai FY, He P, Ye JZ, Xu LH, Ouyang DY, Li CG, et al. Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages. Cell Prolif. 2019;52:e12663.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol. 2017;24:507–14.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv. 2020;6:eabc3465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Yin B, Li D, Wang G, Han X, Sun X. GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun. 2018;495:1418–25.

    Article  CAS  PubMed  Google Scholar 

  27. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547:99–103.

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ruan J. Structural insight of gasdermin family driving pyroptotic cell death. Adv Exp Med Biol. 2019;1172:189–205.

    Article  CAS  PubMed  Google Scholar 

  31. De Schutter E, Roelandt R, Riquet FB, Van Camp G, Wullaert A, Vandenabeele P. Punching holes in cellular membranes: biology and evolution of gasdermins. Trends Cell Biol. 2021;31:500–13.

    Article  PubMed  Google Scholar 

  32. Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 2020;20:143–57.

    Article  CAS  PubMed  Google Scholar 

  33. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.

    Article  CAS  PubMed  Google Scholar 

  34. Tang Y, Zhang R, Xue Q, Meng R, Wang X, Yang Y, et al. TRIF signaling is required for caspase-11-dependent immune responses and lethality in sepsis. Mol Med. 2018;24:66.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43:923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nozaki K, Maltez VI, Rayamajhi M, Tubbs AL, Mitchell JE, Lacey CA, et al. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature. 2022;606:960–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Qiang X, Wang Y, Zhu S, Li J, Babaev A, et al. Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Sci Transl Med. 2020;12:eaaz3833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature. 2006;440:1064–8.

    Article  CAS  PubMed  Google Scholar 

  39. Seeley JJ, Baker RG, Mohamed G, Bruns T, Hayden MS, Deshmukh SD, et al. Induction of innate immune memory via microRNA targeting of chromatin remodelling factors. Nature. 2018;559:114–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sha T, Sunamoto M, Kitazaki T, Sato J, Ii M, Iizawa Y. Therapeutic effects of TAK-242, a novel selective Toll-like receptor 4 signal transduction inhibitor, in mouse endotoxin shock model. Eur J Pharmacol. 2007;571:231–9.

    Article  CAS  PubMed  Google Scholar 

  41. Sheehan M, Wong HR, Hake PW, Malhotra V, O’Connor M, Zingarelli B. Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Mol Pharmacol. 2002;61:953–63.

    Article  CAS  PubMed  Google Scholar 

  42. Wynn JL, Wilson CS, Hawiger J, Scumpia PO, Marshall AF, Liu JH, et al. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18. Proc Natl Acad Sci USA. 2016;113:E2627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase III trial. Crit Care Med. 2016;44:275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vince JE, De Nardo D, Gao W, Vince AJ, Hall C, McArthur K, et al. The mitochondrial apoptotic effectors BAX/BAK activate caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1beta activation. Cell Rep. 2018;25:2339–53.e4.

    Article  CAS  PubMed  Google Scholar 

  45. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008;105:12815–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44:833–46.

    Article  CAS  PubMed  Google Scholar 

  47. Kang TB, Yang SH, Toth B, Kovalenko A, Wallach D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity. 2013;38:27–40.

    Article  CAS  PubMed  Google Scholar 

  48. Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 2021;31:980–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 2018;115:E10888–e97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, et al. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. Embo J. 2019;38:e101638.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Karki R, Zheng M, Kancharana B, Lee S, Kesavardhana S, et al. Cutting edge: caspase-8 is a linchpin in caspase-3 and gasdermin D activation to control cell death, cytokine release, and host defense during influenza A virus infection. J Immunol. 2021;207:2411–6.

    Article  CAS  PubMed  Google Scholar 

  53. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun. 2019;10:1689.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS, et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 2012;19:1709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Van Opdenbosch N, Van Gorp H, Verdonckt M, Saavedra PHV, de Vasconcelos NM, Goncalves A, et al. Caspase-1 engagement and TLR-induced c-FLIP expression suppress ASC/Caspase-8-dependent apoptosis by inflammasome sensors NLRP1b and NLRC4. Cell Rep. 2017;21:3427–44.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013;20:1149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lamkanfi M, Kanneganti TD, Van Damme P, Vanden Berghe T, Vanoverberghe I, Vandekerckhove J, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008;7:2350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000;149:613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciated the carefully check of language by Dr. Chen, Jiong from Nanjing University. We also thank Prof. Shu Zhu from University of Science and Technology of China for providing the Caspase11-KO mice.

Funding

This work was supported by grants from the Ministry of Science and Technology of China (grant 2018YFA0801100 and 2021YFF0702100), the National Natural Science Foundation of China (grant 31971056, 31772550, 32000513), the Natural Science Foundation of Jiangsu Province (BK20181260), the Fundamental Research Funds for the Central Universities (14380516 and 021414380533).

Author information

Authors and Affiliations

Authors

Contributions

ZL and XG supervised the whole project. XL conceived, designed and performed experiments. XL, ZL, and XG analyzed the experiments and wrote the manuscript. TZ participated in the induction of necroptosis and Live-cell imaging experiments. RX and Qin Chen performed genotype identification of mice used in this project. LK, TZ, RX, Qianyue Chen and JP participated in the construction of septic mouse model. MS participated in the FACS experiments.

Corresponding authors

Correspondence to Xiang Gao or Zhaoyu Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All mice were housed in a specific pathogen-free facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International. All animal welfare and experimental procedures were approved by the Animal Care and Use Committee of the Model Animal Research Center, Nanjing University (Nanjing, China).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, T., Kang, L. et al. Apoptotic caspase-7 activation inhibits non-canonical pyroptosis by GSDMB cleavage. Cell Death Differ 30, 2120–2134 (2023). https://doi.org/10.1038/s41418-023-01211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01211-3

This article is cited by

Search

Quick links