Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NKAP acts with HDAC3 to prevent R-loop associated genome instability

Abstract

Persistent R-loop accumulation can cause DNA damage and lead to genome instability, which contributes to various human diseases. Identification of molecules and signaling pathways in controlling R-loop homeostasis provide important clues about their physiological and pathological roles in cells. Here, we show that NKAP (NF-κB activating protein) is essential for preventing R-loop accumulation and maintaining genome integrity through forming a protein complex with HDAC3. NKAP depletion causes DNA damage and genome instability. Aberrant accumulation of R-loops is present in NKAP-deficient cells and leads to DNA damage and DNA replication fork progression defects. Moreover, NKAP depletion induced R-loops and DNA damage are dependent on transcription. Consistently, the NKAP interacting protein HDAC3 exhibits a similar role in suppressing R-loop associated DNA damage and replication stress. Further analysis uncovers that HDAC3 functions to stabilize NKAP protein, independent of its deacetylase activity. In addition, NKAP prevents R-loop formation by maintaining RNA polymerase II pausing. Importantly, R-loops induced by NKAP or HDAC3 depletion are processed into DNA double-strand breaks by XPF and XPG endonucleases. These findings indicate that both NKAP and HDAC3 are novel key regulators of R-loop homeostasis, and their dysregulation might drive tumorigenesis by causing R-loop associated genome instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knockdown of NKAP leads to DNA damage and genome instability.
Fig. 2: NKAP depletion induced R-loop accumulation contributes to DNA damage.
Fig. 3: Defective DNA replication in NKAP depletion cells.
Fig. 4: NKAP depletion induced R-Loops accumulation and DNA damage are dependent on transcription.
Fig. 5: Knockdown of HDAC3 results in R-loop accumulation that triggers DNA damage.
Fig. 6: Overexpression of NKAP C-terminal DUF926 domain causes R-loop accumulation and DNA damage.
Fig. 7: NKAP protein is stabilized by HDAC3 independent of its deacetylase activity.
Fig. 8: Depletion of NKAP reduces Pol II occupancy at TSS and TES sites.
Fig. 9: R-loops are processed into DNA double-strand breaks by XPF and XPG in NKAP or HDAC3 depletion cells.
Fig. 10: Working model showing the role of NKAP and HDAC3 in preventing R-loop formation and genome instability.

Similar content being viewed by others

Data availability

The authors declare that [the/all other] data supporting the findings of this study are available within the paper [and its supplementary information files].

References

  1. Aguilera A, García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012;46:115–24.

    Article  CAS  PubMed  Google Scholar 

  2. Santos-Pereira JM, Aguilera A. R loops: new modulators of genome dynamics and function. Nat Rev Genet. 2015;16:583–97.

    Article  CAS  PubMed  Google Scholar 

  3. García-Muse T, Aguilera A. R Loops: From Physiological to Pathological Roles. Cell 2019;179:604–18.

    Article  PubMed  Google Scholar 

  4. Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, et al. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters. Mol Cell. 2018;69:426–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Crossley MP, Bocek M, Cimprich KA. R-Loops as Cellular Regulators and Genomic Threats. Mol Cell. 2019;73:398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chédin F. Nascent Connections: R-Loops and Chromatin Patterning. Trends Genet: TIG. 2016;32:828–38.

    Article  PubMed  Google Scholar 

  7. Sollier J, Cimprich KA. Breaking bad: R-loops and genome integrity. Trends Cell Biol. 2015;25:514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol. 2020;21:167–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014;28:1384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gómez-González B, García-Rubio M, Bermejo R, Gaillard H, Shirahige K, Marín A, et al. Genome-wide function of THO/TREX in active genes prevents R-loop-dependent replication obstacles. EMBO J. 2011;30:3106–19.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, et al. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev. 2011;25:2041–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wells JP, White J, Stirling PC. R Loops and Their Composite Cancer Connections. Trends Cancer. 2019;5:619–31.

    Article  CAS  PubMed  Google Scholar 

  13. Richard P, Manley JL. R Loops and Links to Human Disease. J Mol Biol. 2017;429:3168–80.

    Article  CAS  PubMed  Google Scholar 

  14. Groh M, Gromak N. Out of balance: R-loops in human disease. PLoS Genet. 2014;10:e1004630.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bayona-Feliu A, Barroso S, Munoz S, Aguilera A. The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts. Nat Genet. 2021;53:1050–63.

    Article  CAS  PubMed  Google Scholar 

  16. Prendergast L, McClurg UL, Hristova R, Berlinguer-Palmini R, Greener S, Veitch K, et al. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat Commun. 2020;11:4534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lam FC, Kong YW, Huang Q, Vu Han T-L, Maffa AD, Kasper EM, et al. BRD4 prevents the accumulation of R-loops and protects against transcription-replication collision events and DNA damage. Nat Commun. 2020;11:4083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Edwards DS, Maganti R, Tanksley JP, Luo J, Park JJH, Balkanska-Sinclair E, et al. BRD4 Prevents R-Loop Formation and Transcription-Replication Conflicts by Ensuring Efficient Transcription Elongation. Cell Rep. 2020;32:108166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang T, Wallis M, Petrovic V, Challis J, Kalitsis P, Hudson DF. Loss of TOP3B leads to increased R-loop formation and genome instability. Open Biol. 2019;9:190222.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, et al. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev. 2019;33:1751–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Chen J-Y, Huang Y-J, Gu Y, Qiu J, Qian H, et al. The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Mol Cell. 2018;69:412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell. 2014;53:484–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. El Hage A, French SL, Beyer AL, Tollervey D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 2010;24:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A, et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol. 2009;11:1315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 2005;122:365–78.

    Article  CAS  PubMed  Google Scholar 

  26. Salas-Armenteros I, Pérez-Calero C, Bayona-Feliu A, Tumini E, Luna R, Aguilera A. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability.EMBO J. 2017;36:3532–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosler T, Conte F, Longo GMC, Mikicic I, Kreim N, Mockel MM, et al. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat Commun. 2021;12:7314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frame JM, North TE. Ddx41 loss R-loops in cGAS to fuel inflammatory HSPC production. Dev Cell. 2021;56:571–2.

    Article  CAS  PubMed  Google Scholar 

  29. Yu Z, Mersaoui SY, Guitton-Sert L, Coulombe Y, Song J, Masson J-Y, et al. DDX5 resolves R-loops at DNA double-strand breaks to promote DNA repair and avoid chromosomal deletions. NAR Cancer 2020;2:zcaa028.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pérez-Calero C, Bayona-Feliu A, Xue X, Barroso SI, Muñoz S, González-Basallote VM, et al. UAP56/DDX39B is a major cotranscriptional RNA-DNA helicase that unwinds harmful R loops genome-wide. Genes Dev. 2020;34:898–912.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Björkman A, Johansen SL, Lin L, Schertzer M, Kanellis DC, Katsori A-M, et al. Human RTEL1 associates with Poldip3 to facilitate responses to replication stress and R-loop resolution. Genes Dev. 2020;34:1065–74.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mersaoui SY, Yu Z, Coulombe Y, Karam M, Busatto FF, Masson J-Y, et al. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids.EMBO J. 2019;38:e100986.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, et al. RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids. Cell Rep. 2019;29:2890–900.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao H, Zhu M, Limbo O, Russell P. RNase H eliminates R-loops that disrupt DNA replication but is nonessential for efficient DSB repair. EMBO Rep. 2018;19:e45335.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ribeiro de Almeida C, Dhir S, Dhir A, Moghaddam AE, Sattentau Q, Meinhart A, et al. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol Cell. 2018;70:650–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song C, Hotz-Wagenblatt A, Voit R, Grummt I. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 2017;31:1370–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amon JD, Koshland D. RNase H enables efficient repair of R-loop induced DNA damage. eLife. 2016;5:e20533.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wahba L, Amon JD, Koshland D, Vuica-Ross M. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell. 2011;44:978–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Skourti-Stathaki K, Proudfoot NJ, Gromak N. Human Senataxin Resolves RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent Termination. Mol Cell. 2011;42:794–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, et al. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell. 2015;57:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. García-Rubio ML, Pérez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E. Rosado IV, et al. The Fanconi Anemia Pathway Protects Genome Integrity from R-loops. PLoS Genet. 2015;11:e1005674.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A. BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 2014;511:362–5.

    Article  CAS  PubMed  Google Scholar 

  43. Burgute BD, Peche VS, Steckelberg A-L, Glöckner G, Gaßen B, Gehring NH, et al. NKAP is a novel RS-related protein that interacts with RNA and RNA binding proteins. Nucleic Acids Res. 2014;42:3177–93.

    Article  CAS  PubMed  Google Scholar 

  44. Pajerowski AG, Nguyen C, Aghajanian H, Shapiro MJ, Shapiro VS. NKAP is a transcriptional repressor of notch signaling and is required for T cell development. Immunity 2009;30:696–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen DY, Li ZQ, Yang Q, Zhang JB, Zhai ZH, Shu HB. Identification of a nuclear protein that promotes NF-kappa B activation. Biochem Bioph Res Co. 2003;310:720–4.

    Article  CAS  Google Scholar 

  46. Shapiro MJ, Lehrke MJ, Chung JY, Romero Arocha S, Shapiro VS. NKAP Must Associate with HDAC3 to Regulate Hematopoietic Stem Cell Maintenance and Survival. J Immunol (Baltim, Md: 1950). 2019;202:2287–95.

    Article  CAS  Google Scholar 

  47. Hsu FC, Pajerowski AG, Nelson-Holte M, Sundsbak R, Shapiro VS. NKAP is required for T cell maturation and acquisition of functional competency. J Exp Med. 2011;208:1291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pajerowski AG, Shapiro MJ, Gwin K, Sundsbak R, Nelson-Holte M, Medina K, et al. Adult hematopoietic stem cells require NKAP for maintenance and survival. Blood 2010;116:2684–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiordaliso SK, Iwata-Otsubo A, Ritter AL, Quesnel-Vallières M, Fujiki K, Nishi E, et al. Missense Mutations in NKAP Cause a Disorder of Transcriptional Regulation Characterized by Marfanoid Habitus and Cognitive Impairment. Am J Hum Genet. 2019;105:987–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fica SM, Oubridge C, Wilkinson ME, Newman AJ, Nagai K. A human postcatalytic spliceosome structure reveals essential roles of metazoan factors for exon ligation. Science 2019;363:710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li T, Chen L, Cheng J, Dai J, Huang Y, Zhang J, et al. SUMOylated NKAP is essential for chromosome alignment by anchoring CENP-E to kinetochores. Nat Commun. 2016;7:12969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, et al. Excessive miR-25-3p maturation via N(6)-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 2019;10:1858.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lu Y, Liu Y, Yang C. Evaluating In Vitro DNA Damage Using Comet Assay. J Visualized Exp. 2017;128:56450.

  54. Chang EY-C, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, et al. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun. 2019;10:4265.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shiromoto Y, Sakurai M, Minakuchi M, Ariyoshi K, Nishikura K. ADAR1 RNA editing enzyme regulates R-loop formation and genome stability at telomeres in cancer cells. Nat Commun. 2021;12:1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao B, Lin J, Rong L, Wu S, Deng Z, Fatkhutdinov N, et al. ARID1A promotes genomic stability through protecting telomere cohesion. Nat Commun. 2019;10:4067.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mukherjee C, Tripathi V, Manolika EM, Heijink AM, Ricci G, Merzouk S, et al. RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nat Commun. 2019;10:3287.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sanz LA, Chédin F. High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc. 2019;14:1734–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jimenez M, Urtasun R, Elizalde M, Azkona M, Latasa MU, Uriarte I, et al. Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Res. 2019;47:3450–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boguslawski SJ, Smith DE, Michalak MA, Mickelson KE, Yehle CO, Patterson WL, et al. Characterization of Monoclonal-Antibody to DNA.Rna and Its Application to Immunodetection of Hybrids. J Immunol Methods. 1986;89:123–30.

    Article  CAS  PubMed  Google Scholar 

  61. Smolka JA, Sanz LA, Hartono SR, Chedin F. Recognition of RNA by the S9.6 antibody creates pervasive artifacts when imaging RNA:DNA hybrids. J Cell Biol. 2021;220:e202004079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chédin F, Hartono SR, Sanz LA, Vanoosthuyse V. Best practices for the visualization, mapping, and manipulation of R-loops. EMBO J. 2021;40:e106394.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell. 2008;30:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, et al. Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor. Mol Cell. 2013;52:769–82.

    Article  CAS  PubMed  Google Scholar 

  66. Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep. 2018;23:1891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, Gregersen L, et al. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Mol Cell. 2019;76:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shivji MKK, Renaudin X, Williams CH, Venkitaraman AR. BRCA2 Regulates Transcription Elongation by RNA Polymerase II to Prevent R-Loop Accumulation. Cell Rep. 2018;22:1031–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Chiang HC, Wang Y, Zhang C, Smith S, Zhao X, et al. Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis. Nat Commun. 2017;8:15908.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell. 2014;56:777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shinriki S, Hirayama M, Nagamachi A, Yokoyama A, Kawamura T, Kanai A, et al. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022;36:2605–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zardoni L, Nardini E, Brambati A, Lucca C, Choudhary R, Loperfido F, et al. Elongating RNA polymerase II and RNA:DNA hybrids hinder fork progression and gene expression at sites of head-on replication-transcription collisions. Nucleic Acids Res. 2021;49:12769–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goulielmaki E, Tsekrekou M, Batsiotos N, Ascensao-Ferreira M, Ledaki E, Stratigi K, et al. The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun. 2021;12:3153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crossley MP, Song C, Bocek MJ, Choi JH, Kousorous J, Sathirachinda A, et al. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 2023;613:187–94.

    Article  CAS  PubMed  Google Scholar 

  75. Chatzidoukaki O, Stratigi K, Goulielmaki E, Niotis G, Akalestou-Clocher A, Gkirtzimanaki K, et al. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. Sci Adv. 2021;7:eabj5769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dash B, Shapiro MJ, Chung JY, Romero Arocha S, Shapiro VS. Treg-specific deletion of NKAP results in severe, systemic autoimmunity due to peripheral loss of Tregs. J Autoimmun. 2018;89:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hsu FC, Belmonte PJ, Constans MM, Chen MBW, McWilliams DC, Hiebert SW, et al. Histone Deacetylase 3 Is Required for T Cell Maturation. J Immunol. 2015;195:1578–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Jun Huang for providing S9.6 antibodies during initial studies. We are grateful to Profs Jun Ma, Chih-Hung Hsu, Feng He, Pengfei Xu, Hongqing Liang and Tinggang Chew for helpful discussions.

Funding

This study was supported by the National Natural Science Foundation of China (grant 31970668) and the National Key Research and Development Program of China (2018YFC1003200).

Author information

Authors and Affiliations

Authors

Contributions

WG and WL contributed to the study design. XZ performed all the experiments, prepared the figures and analyzed data with the help from JD, YL, XJ and CW. WG, WL, and XY provided resource and supervision. XZ and WG wrote the paper with input from all authors.

Corresponding authors

Correspondence to Weiguo Lu or Wanzhong Ge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Duan, J., Li, Y. et al. NKAP acts with HDAC3 to prevent R-loop associated genome instability. Cell Death Differ 30, 1811–1828 (2023). https://doi.org/10.1038/s41418-023-01182-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01182-5

This article is cited by

Search

Quick links