Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage

Abstract

Skeletal muscle regeneration relies on muscle stem (satellite) cells. We previously demonstrated that satellite cells efficiently and accurately repair radiation-induced DNA double-strand breaks (DSBs) via the DNA-dependent kinase DNA-PKcs. We show here that DNA-PKcs affects myogenesis independently of its role in DSB repair. Consequently, this process does not require the accumulation of DSBs and it is also independent of caspase-induced DNA damage. We report that in myogenic cells DNA-PKcs is essential for the expression of the differentiation factor Myogenin in an Akt2-dependent manner. DNA-PKcs interacts with the p300-containing complex that activates Myogenin transcription. We show also that SCID mice that are deficient in DNA-PKcs, and are used for transplantation and muscle regeneration studies, display altered myofiber composition and delayed myogenesis upon injury. These defects are exacerbated after repeated injury/regeneration events resulting in reduced muscle size. We thus identify a novel, caspase-independent, regulation of myogenic differentiation, and define a differentiation phase that does not involve the DNA damage/repair process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of DNA-PKcs blocks myogenic differentiation of satellite cells in the absence of irradiation (induced DSBs).
Fig. 2: DNA-PKcs is required for the expression of myogenin in a Akt-2 dependent manner.
Fig. 3: DNA-PKcs interacts with the complex that activates Myogenin expression, and activates Myogenin/myogenic differentiation without acting in DNA repair.
Fig. 4: Delayed SC differentiation in SCID mice results in altered muscle composition during regeneration.
Fig. 5: Marked decrease of muscle mass and increased SC population in SCID mice after multiple regeneration events.
Fig. 6: Scheme activation of Myogenin and muscle fibers before and after regeneration in WT vs SCID.

Similar content being viewed by others

Data availability

The data analyzed during this study are included in this published article and the supplemental data files.

References

  1. Vitale I, Manic G, De Maria R, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol Cell. 2017;66:306–19. https://doi.org/10.1016/j.molcel.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  2. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, et al. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res. 2002;281:39–49. https://doi.org/10.1006/excr.2002.5653.

    Article  CAS  PubMed  Google Scholar 

  3. Vahidi Ferdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, et al. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res. 2014;13:492–507. https://doi.org/10.1016/j.scr.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  4. Simonatto M, Marullo F, Chiacchiera F, Musaró A, Wang JY, Latella L, et al. DNA damage-activated ABL-MyoD signaling contributes to DNA repair in skeletal myoblasts. Cell Death Differ. 2013;20:1664–74. https://doi.org/10.1038/cdd.2013.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA. Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci USA. 2010;107:4230–5. https://doi.org/10.1073/pnas.0913089107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Xu X, Chen Y, Cheung JC, Wang H, Jiang J, et al. Structure of an activated DNA-PK and its implications for NHEJ. Mol Cell. 2021;81:801–10.e803. https://doi.org/10.1016/j.molcel.2020.12.015.

    Article  CAS  PubMed  Google Scholar 

  7. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66:801–17. https://doi.org/10.1016/j.molcel.2017.05.015.

    Article  CAS  PubMed  Google Scholar 

  8. Kotula E, Faigle W, Berthault N, Dingli F, Loew D, Sun JS, et al. DNA-PK target identification reveals novel links between DNA repair signaling and cytoskeletal regulation. PLoS ONE. 2013;8:e80313. https://doi.org/10.1371/journal.pone.0080313.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matheny RW Jr., Geddis AV, Abdalla MN, Leandry LA, Ford M, McClung HL, et al. AKT2 is the predominant AKT isoform expressed in human skeletal muscle. Physiol Rep. 2018;6:e13652. https://doi.org/10.14814/phy2.13652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell. 2014;159:1524–37. https://doi.org/10.1016/j.cell.2014.11.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang G, Zhu H, Situ C, Han L, Yu Y, Cheung TH, et al. p110alpha of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J. 2018;37. https://doi.org/10.15252/embj.201798239.

  12. Chen J, Wang Y, Hamed M, Lacroix N, Li Q. Molecular basis for the regulation of transcriptional coactivator p300 in myogenic differentiation. Sci Rep. 2015;5:13727. https://doi.org/10.1038/srep13727.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Knight JD, Kothary R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet Muscle. 2011;1:29. https://doi.org/10.1186/2044-5040-1-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y. Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci. 1998;111:769–79.

    Article  CAS  PubMed  Google Scholar 

  15. Puri PL, Bhakta K, Wood LD, Costanzo A, Zhu J, Wang JY. A myogenic differentiation checkpoint activated by genotoxic stress. Nat Genet. 2002;32:585–93. https://doi.org/10.1038/ng1023.

    Article  CAS  PubMed  Google Scholar 

  16. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004;166:347–57. https://doi.org/10.1083/jcb.200312007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham RT. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair. 2004;3:883–7. https://doi.org/10.1016/j.dnarep.2004.04.002.

    Article  CAS  PubMed  Google Scholar 

  18. Hunter T. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell. 1995;83:1–4.

    Article  CAS  PubMed  Google Scholar 

  19. Bozulic L, Hemmings BA. PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol. 2009;21:256–61. https://doi.org/10.1016/j.ceb.2009.02.002.

    Article  CAS  PubMed  Google Scholar 

  20. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15:6541–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell. 2007;28:200–13. https://doi.org/10.1016/j.molcel.2007.08.021.

    Article  CAS  PubMed  Google Scholar 

  22. Faralli H, Dilworth FJ. Turning on myogenin in muscle: a paradigm for understanding mechanisms of tissue-specific gene expression. Comp Funct Genomics. 2012;2012:836374. https://doi.org/10.1155/2012/836374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010;40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–56. https://doi.org/10.1016/j.cell.2017.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connolly PF, Fearnhead HO. DNA-PK activity is associated with caspase-dependent myogenic differentiation. FEBS J. 2016;283:3626–36. https://doi.org/10.1111/febs.13832.

    Article  CAS  PubMed  Google Scholar 

  26. Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M, et al. Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol. 2010;176:2414–24. https://doi.org/10.2353/ajpath.2010.090887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carraro U, Dalla Libera L, Catani C. Myosin light and heavy chains in muscle regenerating in absence of the nerve: transient appearance of the embryonic light chain. Exp Neurol. 1983;79:106–17.

    Article  CAS  PubMed  Google Scholar 

  28. Brzoska E, Ciemerych MA, Przewozniak M, Zimowska M. Regulation of muscle stem cells activation: the role of growth factors and extracellular matrix. Vitam Horm. 2011;87:239–76. https://doi.org/10.1016/b978-0-12-386015-6.00031-7.

    Article  CAS  PubMed  Google Scholar 

  29. Bencze M, Negroni E, Vallese D, Yacoub-Youssef H, Chaouch S, Wolff A, et al. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation. Mol Ther. 2012;20:2168–79. https://doi.org/10.1038/mt.2012.189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panci G, Chazaud B. Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol. 2021;119:32–38. https://doi.org/10.1016/j.semcdb.2021.05.031.

    Article  CAS  PubMed  Google Scholar 

  31. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thepenier C, et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE. 2016;11:e0147198. https://doi.org/10.1371/journal.pone.0147198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Röckl KS, Hirshman MF, Brandauer J, Fujii N, Witters LA, Goodyear LJ. Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes. 2007;56:2062–9. https://doi.org/10.2337/db07-0255.

    Article  CAS  PubMed  Google Scholar 

  33. Egawa T, Ohno Y, Goto A, Yokoyama S, Hayashi T, Goto K. AMPK mediates muscle mass change but not the transition of myosin heavy chain isoforms during unloading and reloading of skeletal muscles in mice. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19102954.

  34. Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS ONE. 2012;7:e35273. https://doi.org/10.1371/journal.pone.0035273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaneko S, Feldman RI, Yu L, Wu Z, Gritsko T, Shelley SA, et al. Positive feedback regulation between Akt2 and MyoD during muscle differentiation. Cloning of Akt2 promoter. J Biol Chem. 2002;277:23230–5. https://doi.org/10.1074/jbc.M201733200.

    Article  CAS  PubMed  Google Scholar 

  36. Vandromme M, Rochat A, Meier R, Carnac G, Besser D, Hemmings BA, et al. Protein kinase B beta/Akt2 plays a specific role in muscle differentiation. J Biol Chem. 2001;276:8173–9. https://doi.org/10.1074/jbc.M005587200.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson EM, Tureckova J, Rotwein P. Permissive roles of phosphatidyl inositol 3-kinase and Akt in skeletal myocyte maturation. Mol Biol Cell. 2004;15:497–505. https://doi.org/10.1091/mbc.E03-05-0351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20:74–88. https://doi.org/10.1038/s41568-019-0216-7.

    Article  CAS  PubMed  Google Scholar 

  39. Bozulic L, Surucu B, Hynx D, Hemmings BA. PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell. 2008;30:203–13. https://doi.org/10.1016/j.molcel.2008.02.024.

    Article  CAS  PubMed  Google Scholar 

  40. Liu P, Gan W, Guo C, Xie A, Gao D, Guo J, et al. Akt-mediated phosphorylation of XLF impairs non-homologous end-joining DNA repair. Mol Cell. 2015;57:648–61. https://doi.org/10.1016/j.molcel.2015.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: a multi-faceted player in DNA damage response. Front Genet. 2020;11:607428. https://doi.org/10.3389/fgene.2020.607428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Damia G. Targeting DNA-PK in cancer. Mutat Res. 2020;821:111692. https://doi.org/10.1016/j.mrfmmm.2020.111692.

    Article  CAS  PubMed  Google Scholar 

  43. Bustin M, Catez F, Lim JH. The dynamics of histone H1 function in chromatin. Mol Cell. 2005;17:617–20. https://doi.org/10.1016/j.molcel.2005.02.019.

    Article  CAS  PubMed  Google Scholar 

  44. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, et al. A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science. 2006;312:1798–802. https://doi.org/10.1126/science.1127196.

    Article  CAS  PubMed  Google Scholar 

  45. Bouquet F, Ousset M, Biard D, Fallone F, Dauvillier S, Frit P, et al. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci. 2011;124:1943–51. https://doi.org/10.1242/jcs.078030.

    Article  CAS  PubMed  Google Scholar 

  46. Wrann S, Kaufmann MR, Wirthner R, Stiehl DP, Wenger RH. HIF mediated and DNA damage independent histone H2AX phosphorylation in chronic hypoxia. Biol Chem. 2013;394:519–28. https://doi.org/10.1515/hsz-2012-0311.

    Article  CAS  PubMed  Google Scholar 

  47. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA. Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA. 2002;99:11025–30. https://doi.org/10.1073/pnas.162172899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murray TV, McMahon JM, Howley BA, Stanley A, Ritter T, Mohr A, et al. A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci. 2008;121:3786–93. https://doi.org/10.1242/jcs.024547.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Khalaf MH, Blake LE, Larsen BD, Bell RA, Brunette S, Parks RJ, et al. Temporal activation of XRCC1-mediated DNA repair is essential for muscle differentiation. Cell Discov. 2016;2:15041. https://doi.org/10.1038/celldisc.2015.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wong RH, Chang I, Hudak CS, Hyun S, Kwan HY, Sul HS. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell. 2009;136:1056–72. https://doi.org/10.1016/j.cell.2008.12.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, et al. Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity. 1998;9:355–66. https://doi.org/10.1016/s1074-7613(00)80618-4.

    Article  CAS  PubMed  Google Scholar 

  52. Anne Esguerra Z, Watanabe G, Okitsu CY, Hsieh CL, Lieber MR. DNA-PKcs chemical inhibition versus genetic mutation: Impact on the junctional repair steps of V(D)J recombination. Mol Immunol. 2020;120:93–100. https://doi.org/10.1016/j.molimm.2020.01.018.

    Article  CAS  PubMed  Google Scholar 

  53. Murphy MM, Keefe AC, Lawson JA, Flygare SD, Yandell M, Kardon G. Transiently active Wnt/beta-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration. Stem Cell Rep. 2014;3:475–88. https://doi.org/10.1016/j.stemcr.2014.06.019.

    Article  CAS  Google Scholar 

  54. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–30.

    Article  CAS  PubMed  Google Scholar 

  55. Beamish HJ, Jessberger R, Riballo E, Priestley A, Blunt T, Kysela B, et al. The C-terminal conserved domain of DNA-PKcs, missing in the SCID mouse, is required for kinase activity. Nucleic Acids Res. 2000;28:1506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Araki R, Fujimori A, Hamatani K, Mita K, Saito T, Mori M, et al. Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice. Proc Natl Acad Sci USA. 1997;94:2438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP, et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA. 1996;93:10285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, et al. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther. 2015;6:156. https://doi.org/10.1186/s13287-015-0141-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grabowska I, Mazur MA, Kowalski K, Helinska A, Moraczewski J, Streminska W, et al. Progression of inflammation during immunodeficient mouse skeletal muscle regeneration. J Muscle Res Cell Motil. 2015;36:395–404. https://doi.org/10.1007/s10974-015-9433-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Farini A, Meregalli M, Belicchi M, Battistelli M, Parolini D, D’Antona G, et al. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J Pathol. 2007;213:229–38. https://doi.org/10.1002/path.2213.

    Article  CAS  PubMed  Google Scholar 

  61. Gayraud-Morel B, Chretien F, Jory A, Sambasivan R, Negroni E, Flamant P, et al. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J Cell Sci. 2012;125:1738–49. https://doi.org/10.1242/jcs.097006.

    Article  CAS  PubMed  Google Scholar 

  62. Gayraud-Morel B, Chretien F, Flamant P, Gomes D, Zammit PS, Tajbakhsh S. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol. 2007;312:13–28. https://doi.org/10.1016/j.ydbio.2007.08.059.

    Article  CAS  PubMed  Google Scholar 

  63. Gayraud-Morel B, Pala F, Sakai H, Tajbakhsh S. Isolation of muscle stem cells from mouse skeletal muscle. Methods Mol Biol. 2017;1556:23–39. https://doi.org/10.1007/978-1-4939-6771-1_2.

    Article  CAS  PubMed  Google Scholar 

  64. Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977;270:725–7.

    Article  CAS  PubMed  Google Scholar 

  65. Pinset C, Montarras D, Chenevert J, Minty A, Barton P, Laurent C, et al. Control of myogenesis in the mouse myogenic C2 cell line by medium composition and by insulin: characterization of permissive and inducible C2 myoblasts. Differentiation. 1988;38:28–34.

    Article  CAS  PubMed  Google Scholar 

  66. Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 2003;100:5057–62. https://doi.org/10.1073/pnas.0830918100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwon M, Firestein BL. DNA transfection: calcium phosphate method. Methods Mol Biol. 2013;1018:107–10. https://doi.org/10.1007/978-1-62703-444-9_10.

    Article  CAS  PubMed  Google Scholar 

  68. Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, et al. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 2014;20:1038–48. https://doi.org/10.1016/j.cmet.2014.10.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018;557:714–8. https://doi.org/10.1038/s41586-018-0144-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Crochemore C, Fernandez-Molina C, Montagne B, Salles A, Ricchetti M. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence. Nat Commun. 2019;10:5576. https://doi.org/10.1038/s41467-019-13314-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Urbani L, Piccoli M, Franzin C, Pozzobon M, De Coppi P. Hypoxia increases mouse satellite cell clone proliferation maintaining both in vitro and in vivo heterogeneity and myogenic potential. PLoS ONE. 2012;7:e49860. https://doi.org/10.1371/journal.pone.0049860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tintignac LA, Sirri V, Leibovitch MP, Lecluse Y, Castedo M, Metivier D, et al. Mutant MyoD lacking Cdc2 phosphorylation sites delays M-phase entry. Mol Cell Biol. 2004;24:1809–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Londhe P, Davie JK. Sequential association of myogenic regulatory factors and E proteins at muscle-specific genes. Skelet Muscle. 2011;1:14. https://doi.org/10.1186/2044-5040-1-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the lab of Shahragim Tajbakhsh for the material provided to perform in vivo muscle injuries and antibodies targeting of myogenic factors, Hiroshi Sakai for guidance to initate the in vivo injury experiments, and Shahragim Tajbakhsh for helpful discussion, Sebastien Mella for his advice on statistical analysis. We thank the Virus and Immunity Laboratory at Institut Pasteur (director Dr. Schwartz) for quantification of p24 viral particles, the components of Elisa Perdiguero-Gomez lab at Institut Pasteur, in particular Alina Sommer, for the technical help with the analysis of macrophage immunolabeling, and the center for Translational Science (CRT)- Cytometry and Biomarkers Unit and Photonic BioImaging Unit of Technology and Service (CBUTechS and PBI UTechS) at Institut Pasteur for technical support in this study.

Funding

Funding

This work was supported by AFM (research grant (16580), and thesis grant (18425)).

Author information

Authors and Affiliations

Authors

Contributions

HHS planned, analyzed, and performed all experiments, except the immunostaining of macrophages, fiber composition (slow and fast fibers), and some experiments with the caspase inhibitor, which have been performed by BM. HHS also contributed to writing the manuscript. MR supervised the study, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Miria Ricchetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutcu, H.H., Montagne, B. & Ricchetti, M. DNA-PKcs regulates myogenesis in an Akt-dependent manner independent of induced DNA damage. Cell Death Differ 30, 1900–1915 (2023). https://doi.org/10.1038/s41418-023-01177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-023-01177-2

This article is cited by

Search

Quick links