Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability

Abstract

Viral infections enhance cancer risk and threaten host genome integrity. Although human cytomegalovirus (HCMV) proteins have been detected in a wide spectrum of human malignancies and HCMV infections have been implicated in tumorigenesis, the underlying mechanisms remain poorly understood. Here, we employed a range of experimental approaches, including single-molecule DNA fiber analysis, and showed that infection by any of the four commonly used HCMV strains: AD169, Towne, TB40E or VR1814 induced replication stress (RS), as documented by host-cell replication fork asymmetry and formation of 53BP1 foci. The HCMV-evoked RS triggered an ensuing host DNA damage response (DDR) and chromosomal instability in both permissive and non-permissive human cells, the latter being particularly relevant in the context of tumorigenesis, as such cells can survive and proliferate after HCMV infection. The viral major immediate early enhancer and promoter (MIEP) that controls expression of the viral genes IE72 (IE-1) and IE86 (IE-2), contains transcription-factor binding sites shared by promoters of cellular stress-response genes. We found that DNA damaging insults, including those relevant for cancer therapy, enhanced IE72/86 expression. Thus, MIEP has been evolutionary shaped to exploit host DDR. Ectopically expressed IE72 and IE86 also induced RS and increased genomic instability. Of clinical relevance, we show that undergoing standard-of-care genotoxic radio-chemotherapy in patients with HCMV-positive glioblastomas correlated with elevated HCMV protein markers after tumor recurrence. Collectively, these results are consistent with our proposed concept of HCMV hijacking transcription-factor binding sites shared with host stress-response genes. We present a model to explain the potential oncomodulatory effects of HCMV infections through enhanced replication stress, subverted DNA damage response and induced genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: DDR is functional in HCMV-infected cells.
Fig. 2: DNA damage induces viral and host protein expression.
Fig. 3: HCMV AD169 infection triggers replication stress.
Fig. 4: Replication stress and other HCMV strains.
Fig. 5: Ectopic expression of IE72 or IE86 induces replication stress.
Fig. 6: Exogenous DNA damage reactivates viral protein expression.
Fig. 7: The effect of ganciclovir on cancer cells.

Data availability

Constructs, maps, sequences and any other raw data supporting the present study are available upon request to any of the corresponding authors.

References

  1. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8:e180–e90.

    Article  PubMed  Google Scholar 

  2. Zuhair M, Smit GSA, Wallis G, Jabbar F, Smith C, Devleesschauwer B, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis. Rev Med Virol. 2019;29:e2034.

  3. Rawlinson WD, Hamilton ST, van Zuylen WJ. Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis. 2016;29:615–24.

    Article  PubMed  Google Scholar 

  4. Harkins LE, Matlaf LA, Soroceanu L, Klemm K, Britt WJ, Wang W, et al. Detection of human cytomegalovirus in normal and neoplastic breast epithelium. Herpesviridae.2010;1:8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boldogh I, Baskar JF, Mar EC, Huang ES. Human cytomegalovirus and herpes simplex type 2 virus in normal and adenocarcinomatous prostate glands. J Natl Cancer Inst. 1983;70:819–26.

    CAS  PubMed  Google Scholar 

  6. Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, et al. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 2011;71:6643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhattacharjee B, Renzette N, Kowalik TF. Genetic analysis of cytomegalovirus in malignant gliomas. J Virol. 2012;86:6815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.

    CAS  PubMed  Google Scholar 

  9. Soderberg-Naucler C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med. 2013;369:985–6.

    Article  PubMed  Google Scholar 

  10. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74:3466–76.

    Article  CAS  PubMed  Google Scholar 

  11. Goerig NL, Frey B, Korn K, Fleckenstein B, Uberla K, Schmidt MA, et al. Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro Oncol. 2016;18:1664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goerig NL, Frey B, Korn K, Fleckenstein B, Uberla K, Schmidt MA, et al. Early mortality of brain cancer patients and its connection to cytomegalovirus reactivation during radiochemotherapy. Clin Cancer Res. 2020;26:3259–70.

    Article  CAS  PubMed  Google Scholar 

  13. Luo MH, Rosenke K, Czornak K, Fortunato EA. Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)- and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J Virol. 2007;81:1934–50.

    Article  CAS  PubMed  Google Scholar 

  14. Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses.2014;6:2155–85.

    Article  CAS  PubMed  Google Scholar 

  15. E X, Pickering MT, Debatis M, Castillo J, Lagadinos A, Wang S, et al. An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog. 2011;7:e1001342.

    Article  PubMed  PubMed Central  Google Scholar 

  16. E X, Savidis G, Chin CR, Wang S, Lu S, Brass AL, et al. A novel DDB2-ATM feedback loop regulates human cytomegalovirus replication. J Virol. 2014;88:2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zavala AG, O’Dowd JM, Fortunato EA. Infection of a single cell line with distinct strains of human cytomegalovirus can result in large variations in virion production and facilitate efficient screening of virus protein function. J Virol. 2015;90:2523–35.

    Article  PubMed  Google Scholar 

  18. Gaspar M, Shenk T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc Natl Acad Sci USA. 2006;103:2821–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Dowd JM, Zavala AG, Brown CJ, Mori T, Fortunato EA. HCMV-infected cells maintain efficient nucleotide excision repair of the viral genome while abrogating repair of the host genome. PLoS Pathog. 2012;8:e1003038.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, et al. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol. 2015;9:601–16.

    Article  CAS  PubMed  Google Scholar 

  21. Bartkova J, Bakkenist CJ, Rajpert-De Meyts E, Skakkebaek NE, Sehested M, Lukas J, et al. ATM activation in normal human tissues and testicular cancer. Cell Cycle. 2005;4:838–45.

    Article  CAS  PubMed  Google Scholar 

  22. Ma AN, Wang H, Guo R, Wang YX, Li W, Cui J, et al. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Epigenetics Chromatin. 2014;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jackson JG, Pereira-Smith OM. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res. 2006;66:8356–60.

    Article  CAS  PubMed  Google Scholar 

  24. Maya-Mendoza A, Olivares-Chauvet P, Kohlmeier F, Jackson DA. Visualising chromosomal replication sites and replicons in mammalian cells. Methods.2012;57:140–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.

    Article  CAS  PubMed  Google Scholar 

  26. Bartek J, Jr. Fornara O, Merchut-Maya JM, Maya-Mendoza A, Rahbar A, Stragliotto G, et al. Replication stress, DNA damage signalling, and cytomegalovirus infection in human medulloblastomas. Mol Oncol. 2017;11:945–64.

  27. Brandes AA, Basso U, Reni M, Vastola F, Tosoni A, Cavallo G, et al. First-line chemotherapy with cisplatin plus fractionated temozolomide in recurrent glioblastoma multiforme: a phase II study of the Gruppo Italiano Cooperativo di Neuro-Oncologia. J Clin Oncol. 2004;22:1598–604.

    Article  CAS  PubMed  Google Scholar 

  28. Uemura S, Matsukado Y, Kuratsu J, Sonoda H, Ohtsuka T, Yoshioka S, et al. [Local chemotherapy of malignant glioma. Intra-tumoral administration of neocarzinostatin]. Neurol Med Chir (Tokyo). 1986;26:468–74.

    Article  CAS  Google Scholar 

  29. Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell .1997;91:119–26.

    Article  CAS  PubMed  Google Scholar 

  30. Reeves M, Sissons P, Sinclair J. Reactivation of human cytomegalovirus in dendritic cells. Disco Med. 2005;5:170–4.

    Google Scholar 

  31. Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. J Virol. 2011;85:12750–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S. Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol. 1993;74:2333–8.

    Article  CAS  PubMed  Google Scholar 

  33. Martin C, Chen S, Maya-Mendoza A, Lovric J, Sims PF, Jackson DA. Lamin B1 maintains the functional plasticity of nucleoli. J Cell Sci. 2009;122:1551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature.2014;511:616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stinski MF, Isomura H. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol. 2008;197:223–31.

    Article  PubMed  Google Scholar 

  36. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E, Helleday T, et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science.2014;343:88–91.

    Article  CAS  PubMed  Google Scholar 

  37. DeMarchi JM, Kaplan AS. Replication of human cytomegalovirus DNA: lack of dependence on cell DNA synthesis. J Virol. 1976;18:1063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamanishi K, Fogel M, Rapp F. Effect of caffeine on the replication of nonirradiated and ultraviolet-irradiated cytomegalovirus. Intervirology.1978;10:241–53.

    Article  CAS  PubMed  Google Scholar 

  39. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature.2018;559:279–84.

    Article  CAS  PubMed  Google Scholar 

  40. Luo MH, Fortunato EA. Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol. 2007;81:10424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science.2008;319:1352–5.

    Article  CAS  PubMed  Google Scholar 

  42. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature.2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  43. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature.2005;434:907–13.

    Article  CAS  PubMed  Google Scholar 

  44. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature.2013;494:492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maiani E, Milletti G, Nazio F, Holdgaard SG, Bartkova J, Rizza S, et al. AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature.2021;592:799–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Venkatesan S, Angelova M, Puttick C, Zhai H, Caswell DR, Lu WT, et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and lung cancer evolution. Cancer Disco. 2021;11:2456–73.

    Article  Google Scholar 

  47. Hertel L, Chou S, Mocarski ES. Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog. 2007;3:e6.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hertel L, Mocarski ES. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J Virol. 2004;78:11988–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang J, Frascaroli G, Lebbink RJ, Ostermann E, Brune W. Human cytomegalovirus glycoprotein B variants affect viral entry, cell fusion, and genome stability. Proc Natl Acad Sci USA. 2019;116:18021–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolmer-Solberg N, Baryawno N, Rahbar A, Fuchs D, Odeberg J, Taher C, et al. Frequent detection of human cytomegalovirus in neuroblastoma: a novel therapeutic target? Int J Cancer. 2013;133:2351–61.

    Article  CAS  PubMed  Google Scholar 

  51. Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, et al. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest. 2011;121:4043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Traylen CM, Patel HR, Fondaw W, Mahatme S, Williams JF, Walker LR, et al. Virus reactivation: a panoramic view in human infections. Future Virol. 2011;6:451–63.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015;10:425–48.

    Article  CAS  PubMed  Google Scholar 

  54. Shen Y, Zhu H, Shenk T. Human cytomagalovirus IE1 and IE2 proteins are mutagenic and mediate “hit-and-run” oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA. 1997;94:3341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Doniger J, Muralidhar S, Rosenthal LJ. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev. 1999;12:367–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stragliotto G, Pantalone MR, Rahbar A, Bartek J, Soderberg-Naucler C. Valganciclovir as Add-on to standard therapy in glioblastoma patients. Clin Cancer Res. 2020;26:4031–9.

    Article  CAS  PubMed  Google Scholar 

  57. Schuessler A, Walker DG, Khanna R. Cytomegalovirus as a novel target for immunotherapy of glioblastoma multiforme. Front Oncol. 2014;4:275.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of Christoffel Dinant and the BioImaging Core Facility at the Danish Cancer Society Research Center.

Funding

This work was supported by grants from The Danish Cancer Society (# R1123-A7785-15-S2, R167-A11068), The Lundbeck Foundation (R266-2017-4289, R322-2019-2577), The Danish Council for Independent Research (# DFF-7016-00313), The Novo Nordisk Foundation (grant # 0060590), The Swedish Research Council VR-MH 2014-46602-117891-30, The Swedish Cancer Foundation/Cancerfonden (# 170176), Swedish Medical Research Council (2019-01736), The Danish National Research Foundation (project CARD, DNRF 125), Grant Agency of the Czech Ministry of Health (NU21-03-00195), Family Ehrling Persson´s Foundation, Sten A Olssons Foundation, BILTEMA Foundation and Family of Jochnich´s Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JMM-M, AM-M, CS-N and JB conceived the study and designed experiments. JMM-M, AM-M, JBjr, Jirina B, PG, MHL, HLC, PJS and MRP performed experiments. JMM-M, JBjr, PG, HLC, PJS, CBB, HB, Jirina B, MRP, CS-N, JB and AM-M analyzed and interpreted the data. JMM-M, AM-M, CS-N and JB wrote the manuscript.

Corresponding authors

Correspondence to Apolinar Maya-Mendoza, Cecilia Söderberg-Naucler or Jiri Bartek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was performed in accordance with the Declaration of Helsinki. Our study includes a cohort of glioblastoma multiforme patients treated at the Department of Neurosurgery of the Copenhagen University Hospital (Rigshospitalet) between 2008 and 2014. The local ethics committee in Region Hovedstaden approved the study. Since all subjects were deceased, the committee waived the need for informed consent in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Edited by G Melino

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merchut-Maya, J.M., Bartek, J., Bartkova, J. et al. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ 29, 1639–1653 (2022). https://doi.org/10.1038/s41418-022-00953-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-022-00953-w

Search

Quick links