Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis

A Correction to this article was published on 21 February 2022

This article has been updated

Abstract

Dysfunction of mRNA or RNA-binding proteins (RBPs) causes cellular aging and age-related degenerative diseases; however, information regarding the mechanism through which RBP-mediated posttranscriptional regulation affects cellular aging and related disease processes is limited. In this study, PUM1 was found to be associated with the self-renewal capacity and aging process of human mesenchymal stem cells (MSC). PUM1 interacted with the 3’-untranslated region of Toll-like receptor 4 (TLR4) to suppress TLR4 mRNA translation and regulate the activity of nuclear factor-κB (NF-κB), a master regulator of the aging process in MSCs. PUM1 overexpression protected MSCs against H2O2-induced cellular senescence by suppressing TLR4-mediated NF-κB activity. TLR4-mediated NF-κB activation is a key regulator in osteoarthritis (OA) pathogenesis. PUM1 overexpression enhanced the chondrogenic potential of MSCs even under the influence of inflammation-inducing factors, such as lipopolysaccharide (LPS) or interleukin-1β (IL-1β), whereas the chondrogenic potential was reduced following the PUM1 knockdown-mediated TLR4 activation. PUM1 levels decreased under inflammatory conditions in vitro and during OA progression in human and mouse disease models. PUM1 knockdown in human chondrocytes promoted chondrogenic phenotype loss, whereas PUM1 overexpression protected the cells from inflammation-mediated disruption of the chondrogenic phenotype. Gene therapy using a lentiviral vector encoding mouse PUM1 showed promise in preserving articular cartilage integrity in OA mouse models. In conclusion, PUM1 is a novel suppressor of MSC aging, and the PUM1-TLR4 regulatory axis represents a potential therapeutic target for OA.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: KD of PUM1 induces cellular senescence in mesenchymal stem cells.
Fig. 2: PUM1 interacts with the TLR4 mRNA and downregulates NF-κB activity in MSCs.
Fig. 3: PUM1 overexpression alleviates H2O2-induced cellular senescence.
Fig. 4: PUM1 overexpression preserves the high chondrogenic potential of MSCs in an inflammatory environment.
Fig. 5: PUM1 and TLR4 are inversely detected in the inflammatory environment in vitro and human OA cartilage tissues.
Fig. 6: PUM1 protects chondrocytes from inflammation, and NORAD may be an upstream regulator of the PUM1-TLR4 axis.
Fig. 7: Gene therapy with a lentiviral vector encoding PUM1 in a mouse model for OA.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

Change history

References

  1. Gupta PK, Das AK, Chullikana A, Majumdar AS. Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther. 2012;3:25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci. 2018;19:360.

    PubMed Central  Article  CAS  Google Scholar 

  3. Veronesi F, Torricelli P, Borsari V, Tschon M, Rimondini L, Fini M. Mesenchymal stem cells in the aging and osteoporotic population. Crit Rev Eukaryot Gene Expr. 2011;21:363–77.

    CAS  PubMed  Article  Google Scholar 

  4. Lee WY, Wang B. Cartilage repair by mesenchymal stem cells: clinical trial update and perspectives. J Orthop Transl. 2017;9:76–88.

    Google Scholar 

  5. Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med. 2020;9:17–27.

    CAS  PubMed  Article  Google Scholar 

  6. Jin YZ, Lee JH. Mesenchymal stem cell therapy for bone regeneration. Clin Orthop Surg. 2018;10:271–8.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Yoon DS, Kim YH, Lee S, Lee KM, Park KH, Jang Y, et al. Interleukin-6 induces the lineage commitment of bone marrow-derived mesenchymal multipotent cells through down-regulation of Sox2 by osteogenic transcription factors. FASEB J. 2014;28:3273–86.

    CAS  PubMed  Article  Google Scholar 

  8. Yoon DS, Kim YH, Jung HS, Paik S, Lee JW. Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif. 2011;44:428–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7:335–43.

    CAS  PubMed  Article  Google Scholar 

  10. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129:163–73.

    CAS  PubMed  Article  Google Scholar 

  11. Yang YK. Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen Ther. 2018;9:120–2.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Goodell MA, Rando TA. Stem cells and healthy aging. Science. 2015;350:1199–204.

    CAS  PubMed  Article  Google Scholar 

  13. Ksiazek K. A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res. 2009;12:105–16.

    CAS  PubMed  Article  Google Scholar 

  14. Martin JA, Buckwalter JA. Roles of articular cartilage aging and chondrocyte senescence in the pathogenesis of osteoarthritis. Iowa Orthop J. 2001;21:1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin JA, Buckwalter JA. Aging, articular cartilage chondrocyte senescence and osteoarthritis. Biogerontology. 2002;3:257–64.

    CAS  PubMed  Article  Google Scholar 

  16. Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51:241–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Loeser RF. Aging processes and the development of osteoarthritis. Curr Opin Rheumatol. 2013;25:108–13.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Deschenes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell. 2017;16:918–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Dong Q, Wei L, Zhang MQ, Wang X. Regulatory RNA binding proteins contribute to the transcriptome-wide splicing alterations in human cellular senescence. Aging (Albany NY). 2018;10:1489–505.

    CAS  Article  Google Scholar 

  21. Edwards TA, Pyle SE, Wharton RP, Aggarwal AK. Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell. 2001;105:281–9.

    CAS  PubMed  Article  Google Scholar 

  22. Wang X, Zamore PD, Hall TM. Crystal structure of a Pumilio homology domain. Mol Cell. 2001;7:855–65.

    CAS  PubMed  Article  Google Scholar 

  23. Moore FL, Jaruzelska J, Fox MS, Urano J, Firpo MT, Turek PJ, et al. Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc Natl Acad Sci USA. 2003;100:538–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Siemen H, Colas D, Heller HC, Brustle O, Pera RA. Pumilio-2 function in the mouse nervous system. PLoS One. 2011;6:e25932.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Xu EY, Chang R, Salmon NA, Reijo, Pera RA. A gene trap mutation of a murine homolog of the Drosophila stem cell factor Pumilio results in smaller testes but does not affect litter size or fertility. Mol Reprod Dev. 2007;74:912–21.

    CAS  PubMed  Article  Google Scholar 

  26. Gennarino VA, Singh RK, White JJ, De Maio A, Han K, Kim JY, et al. Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type Ataxin1 levels. Cell. 2015;160:1087–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164:69–80.

    CAS  PubMed  Article  Google Scholar 

  28. Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, et al. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep. 2019;26:2434–50 e2436.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Lin K, Zhang S, Shi Q, Zhu M, Gao L, Xia W, et al. Essential requirement of mammalian Pumilio family in embryonic development. Mol Biol Cell. 2018;29:2922–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25:2125–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med. 2017;39:775–82.

    CAS  PubMed  Article  Google Scholar 

  32. Nicolae CM, O’Connor MJ, Constantin D, Moldovan GL. NFkappaB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene. 2018;37:3647–56.

    CAS  PubMed  Article  Google Scholar 

  33. Kedde M, van Kouwenhove M, Zwart W, Oude Vrielink JA, Elkon R, Agami R. A Pumilio-induced RNA structure switch in p27-3’ UTR controls miR-221 and miR-222 accessibility. Nat Cell Biol. 2010;12:1014–20.

    CAS  PubMed  Article  Google Scholar 

  34. Uyhazi KE, Yang Y, Liu N, Qi H, Huang XA, Mak W, et al. Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci USA. 2020;117:7851–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber AP. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS One. 2008;3:e3164.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Mareschi K, Rustichelli D, Calabrese R, Gunetti M, Sanavio F, Castiglia S, et al. Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use. Stem Cells Int. 2012;2012:920581.

    PubMed  Article  Google Scholar 

  37. Gu Y, Li T, Ding Y, Sun L, Tu T, Zhu W, et al. Changes in mesenchymal stem cells following long-term culture in vitro. Mol Med Rep. 2016;13:5207–15.

    CAS  PubMed  Article  Google Scholar 

  38. Zhou L, Chen X, Liu T, Gong Y, Chen S, Pan G, et al. Melatonin reverses H2 O2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J Pineal Res. 2015;59:190–205.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal. 2012;24:835–45.

    CAS  PubMed  Article  Google Scholar 

  40. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    CAS  PubMed  Article  Google Scholar 

  41. Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011;12:695–708.

    CAS  PubMed  Article  Google Scholar 

  42. Shih VF, Tsui R, Caldwell A, Hoffmann A. A single NFkappaB system for both canonical and non-canonical signaling. Cell Res. 2011;21:86–102.

    CAS  PubMed  Article  Google Scholar 

  43. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13:460–9.

    CAS  PubMed  Article  Google Scholar 

  44. Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, et al. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res. 2018;46:362–86.

    CAS  PubMed  Article  Google Scholar 

  45. Hellweg CE, Arenz A, Bogner S, Schmitz C, Baumstark-Khan C. Activation of nuclear factor kappa B by different agents: influence of culture conditions in a cell-based assay. Ann N. Y Acad Sci. 2006;1091:191–204.

    CAS  PubMed  Article  Google Scholar 

  46. Gomez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis-finding targets for candidate DMOADs. Nat Rev Rheumatol. 2015;11:159–70.

    CAS  PubMed  Article  Google Scholar 

  47. Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthr Cartil. 2006;14:839–48.

    CAS  Article  Google Scholar 

  48. Jimi E, Fei H, Nakatomi C. NF-kappaB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci. 2019;20:6275.

    CAS  PubMed Central  Article  Google Scholar 

  49. Sitcheran R, Cogswell PC, Baldwin AS Jr. NF-kappaB mediates inhibition of mesenchymal cell differentiation through a posttranscriptional gene silencing mechanism. Genes Dev. 2003;17:2368–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Yang YK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9:131.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Cooke ME, Allon AA, Cheng T, Kuo AC, Kim HT, Vail TP, et al. Structured three-dimensional co-culture of mesenchymal stem cells with chondrocytes promotes chondrogenic differentiation without hypertrophy. Osteoarthr Cartil. 2011;19:1210–8.

    CAS  Article  Google Scholar 

  52. Johnson CI, Argyle DJ, Clements DN. In vitro models for the study of osteoarthritis. Vet J. 2016;209:40–49.

    PubMed  Article  Google Scholar 

  53. Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr Cartil. 2009;17:971–9.

    CAS  Article  Google Scholar 

  54. Claassen H, Schicht M, Brandt J, Reuse K, Schadlich R, Goldring MB, et al. C-28/I2 and T/C-28a2 chondrocytes as well as human primary articular chondrocytes express sex hormone and insulin receptors-Useful cells in study of cartilage metabolism. Ann Anat. 2011;193:23–29.

    CAS  PubMed  Article  Google Scholar 

  55. Goldring MB. Culture of immortalized chondrocytes and their use as models of chondrocyte function. Methods Mol Med. 2004;100:37–52.

    CAS  PubMed  Google Scholar 

  56. Tichon A, Gil N, Lubelsky Y, Havkin Solomon T, Lemze D, Itzkovitz S, et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nat Commun. 2016;7:12209.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Ajekigbe B, Cheung K, Xu Y, Skelton AJ, Panagiotopoulos A, Soul J, et al. Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthr Cartil. 2019;27:694–702.

    CAS  Article  Google Scholar 

  58. Pritzker KP, Gay S, Jimenez SA, Ostergaard K, Pelletier JP, Revell PA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr Cartil. 2006;14:13–29.

    CAS  Article  Google Scholar 

  59. Denu RA, Hematti P. Effects of oxidative stress on mesenchymal stem cell biology. Oxid Med Cell Longev. 2016;2016:2989076.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Szychlinska MA, Stoddart MJ, D’Amora U, Ambrosio L, Alini M, Musumeci G. Mesenchymal Stem Cell-Based Cartilage Regeneration Approach and Cell Senescence: Can We Manipulate Cell Aging and Function? Tissue Eng Part B Rev. 2017;23:529–39.

    PubMed  Article  Google Scholar 

  61. Mato-Basalo R, Morente-Lopez M, Arntz OJ, van de Loo FAJ, Fafian-Labora J, Arufe MC. Therapeutic potential for regulation of the nuclear factor kappa-B transcription factor p65 to prevent cellular senescence and activation of pro-inflammatory in mesenchymal stem cells. Int J Mol Sci. 2021;22:3367.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Lam ATL, Reuveny S, Oh SK. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res. 2020;44:101738.

    CAS  PubMed  Article  Google Scholar 

  63. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42:145–51.

    CAS  PubMed  Article  Google Scholar 

  64. Schelbergen RF, Blom AB, van den Bosch MH, Sloetjes A, Abdollahi-Roodsaz S, Schreurs BW, et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 2012;64:1477–87.

    CAS  PubMed  Article  Google Scholar 

  65. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Bian W, Jing X, Yang Z, Shi Z, Chen R, Xu A, et al. Downregulation of LncRNA NORAD promotes Ox-LDL-induced vascular endothelial cell injury and atherosclerosis. Aging (Albany NY). 2020;12:6385–6400.

    CAS  Article  Google Scholar 

  67. Marques FC, Ulitsky I. Aging well with Norad. Elife. 2019;8:e45974.

    PubMed  PubMed Central  Article  Google Scholar 

  68. Balistreri CR, Candore G, Accardi G, Colonna-Romano G, Lio D. NF-kappaB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies. Immun Ageing. 2013;10:24.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Feng G, Zheng K, Cao T, Zhang J, Lian M, Huang D, et al. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-kappaB-p53/p21 signaling. Cytotechnology. 2018;70:1023–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Ain QU, Batool M, Choi S. TLR4-targeting therapeutics: structural basis and computer-aided drug discovery approaches. Molecules. 2020;25:627.

    PubMed Central  Article  CAS  Google Scholar 

  71. Lee S, Yoon DS, Paik S, Lee KM, Jang Y, Lee JW. microRNA-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9. Stem cells Dev. 2014;23:1798–808.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2019R1I1A1A01060928, NRF-2018K1A4A3A01064257, NRF-2018R1A2B3003446, and NRF-2021R1A5A2022318).

Author information

Authors and Affiliations

Authors

Contributions

DSY. designed the study, performed the experiments, analyzed the data, and wrote the paper. K-ML, YC, EAK, N-HL, SC, KHP, and J-HL performed in vitro and in vivo experiments. H-WK and JWL designed the study, interpreted the data, and revised the paper.

Corresponding authors

Correspondence to Hae-Won Kim or Jin Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Animal handling and procedures were approved and conducted as per the approval of the Institutional Animal Care and Use Committee (IACUC) protocol of the Yonsei University College of Medicine (Approval number: IACUC-2016-0099).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to a missing grant number.

Edited by M. Sibilia

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, D.S., Lee, KM., Choi, Y. et al. TLR4 downregulation by the RNA-binding protein PUM1 alleviates cellular aging and osteoarthritis. Cell Death Differ 29, 1364–1378 (2022). https://doi.org/10.1038/s41418-021-00925-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41418-021-00925-6

Further reading

Search

Quick links