Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modification of the tumor microenvironment enhances immunity with plasmid gene therapy

Abstract

Local intratumor delivery with electroporation of low levels of plasmids encoding molecules, induces an antitumor effect without causing systemic toxicity. However, previous studies have predominately focused on the function of the delivered molecule encoded within the plasmid, and ignored the plasmid vector. In this study, we found vectors pUMVC3 and pVax1 induced upregulation of MHC class I (MHC-I) and PD-L1 on tumor cell surface. These molecules participate in a considerable number of immunoregulatory functions through their interactions with and activating inhibitory immune cell receptors. MHC molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells and tumor cells. Increased PD-L1 expression on tumor cells is an important monitor of tumor growth and the effectiveness of immune inhibitor therapy. Results from flow cytometry confirmed increased expression of MHC-I and PDL-1 on B16F10, 4T1, and KPC tumor cell lines. Preliminary animal data from tumor-bearing models, B16F10 melanoma, 4T1 breast cancer and KPC pancreatic cancer mouse models showed that tumor growth was attenuated after pUMVC3 intratumoral electroporation. Our data also documented that pSTAT1 signaling pathway might not be associated with plasmid vectors’ function of upregulating MHC-I, PD-L1 on tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasmid vector EP attenuate of established tumor growth.
Fig. 2: MHC-I and PD-L1 surface expression on tumor cells were elevated after plasmid DNA electroporation.
Fig. 3: IFN-Îł not IL-12 induces dose-dependent MHC-I and PD-L1 upregulation expression in three different cell lines.
Fig. 4: Regulating surface expression of MHC-I and PD-L1 in cell lines.
Fig. 5: Plasmid DNA upregulation of MHC-I and PD-L1 expression was independent in STAT1 signaling pathway.

Similar content being viewed by others

Data availability

All the data associated with this study are present in the paper or the Supplementary Materials. Materials are available upon request from the corresponding author.

References

  1. Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, et al. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry. 2021;141:107843.

    Article  CAS  PubMed  Google Scholar 

  2. Shi G, Edelblute C, Arpag S, Lundberg C, Heller R. IL-12 Gene electrotransfer triggers a change in immune response within mouse tumors. Cancers. 2018;10:498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fioretti D, Iurescia S, Fazio VM, Rinaldi M. In vivo DNA electrotransfer for immunotherapy of cancer and neurodegenerative diseases. Curr Drug Metab. 2013;14:279–90.

    Article  CAS  PubMed  Google Scholar 

  4. Shi G, Scott M, Mangiamele CG, Heller R. Modification of the tumor microenvironment enhances anti-PD-1 immunotherapy in metastatic melanoma. Pharmaceutics. 2022;14:2429.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Heller LC, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther 2002;9:1321–5.

    Article  CAS  PubMed  Google Scholar 

  6. Bosnjak M, Znidar K, Sales Conniff A, Jesenko T, Markelc B, Semenova N, et al. In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery. Biomed Pharmacother. 2022;150:113088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Znidar K, Bosnjak M, Semenova N, Pakhomova O, Heller L, Cemazar M. Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget. 2018;9:18665–81.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Znidar K, Bosnjak M, Jesenko T, Heller LC, Cemazar M. Upregulation of DNA sensors in B16.F10 melanoma spheroid cells after electrotransfer of pDNA. Technol Cancer Res Treat. 2018;17:1533033818780088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seliger B. Basis of PD1/PD-L1 Therapies. J Clin Med. 2019;8:2168.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  11. Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175–208.

    Article  CAS  PubMed  Google Scholar 

  12. Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005;54:187–207.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10:281–7.

    Article  CAS  PubMed  Google Scholar 

  14. Chew GL, Campbell AE, De Neef E, Sutliff NA, Shadle SC, Tapscott SJ, et al. DUX4 suppresses MHC class I to promote cancer immune evasion and resistance to checkpoint blockade. Dev Cell. 2019;50:658–71.e657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Garrido C, Paco L, Romero I, Berruguilla E, Stefansky J, Collado A, et al. MHC class I molecules act as tumor suppressor genes regulating the cell cycle gene expression, invasion and intrinsic tumorigenicity of melanoma cells. Carcinogenesis. 2012;33:687–93.

    Article  CAS  PubMed  Google Scholar 

  16. Andersson E, Villabona L, Bergfeldt K, Carlson JW, Ferrone S, Kiessling R, et al. Correlation of HLA-A02* genotype and HLA class I antigen down-regulation with the prognosis of epithelial ovarian cancer. Cancer Immunol Immunother. 2012;61:1243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Inoue M, Mimura K, Izawa S, Shiraishi K, Inoue A, Shiba S, et al. Expression of MHC Class I on breast cancer cells correlates inversely with HER2 expression. Oncoimmunology. 2012;1:1104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Noblejas-López MDM, Nieto-Jiménez C, Morcillo García S, Pérez-Peña J, Nuncia-Cantarero M, Andrés-Pretel F, et al. Expression of MHC class I, HLA-A and HLA-B identifies immune-activated breast tumors with favorable outcome. Oncoimmunology. 2019;8:e1629780.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp BG, et al. Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer. 2008;123:609–15.

    Article  PubMed  Google Scholar 

  20. Leapman MS, Presley CJ, Zhu W, Soulos PR, Adelson KB, Miksad RA, et al. Association of programmed cell death ligand 1 expression status with receipt of immune checkpoint inhibitors in patients with advanced non-small cell lung cancer. JAMA Netw Open. 2020;3:e207205.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun JY, Zhang D, Wu S, Xu M, Zhou X, Lu XJ, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives, Biomarker. Research. 2020;8:35.

    Google Scholar 

  22. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Möller K, Fraune C, Blessin NC, Lennartz M, Kluth M, Hube-Magg C, et al. Tumor cell PD-L1 expression is a strong predictor of unfavorable prognosis in immune checkpoint therapy-naive clear cell renal cell cancer. Int Urol Nephrol. 2021;53:2493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saito H, Kono Y, Murakami Y, Shishido Y, Kuroda H, Matsunaga T, et al. Highly activated PD-1/PD-L1 pathway in gastric cancer with PD-L1 expression. Anticancer Res. 2018;38:107–12.

    CAS  PubMed  Google Scholar 

  25. Juneja VR, McGuire KA, Manguso RT, LaFleur MW, Collins N, Haining WN, et al. PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med. 2017;214:895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kelany M, Barth TF, Salem D, Shakweer MM. Prevalence and prognostic implications of PD-L1 expression in soft tissue sarcomas. Pathol Oncol Res. 2021;27:1609804.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ishii H, Azuma K, Kawahara A, Yamada K, Imamura Y, Tokito T, et al. Significance of programmed cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol. 2015;10:426–30.

    Article  CAS  PubMed  Google Scholar 

  29. Deng C, Li Z, Guo S, Chen P, Chen X, Zhou Q, et al. Tumor PD-L1 expression is correlated with increased TILs and poor prognosis in penile squamous cell carcinoma. Oncoimmunology. 2017;6:e1269047.

    Article  PubMed  Google Scholar 

  30. Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 2004;11:1363–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein. 2017;15:369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pradeu T, Cooper EL. The danger theory: 20 years later. Front Immunol. 2012;3:287.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brown BD, Lillicrap D. Dangerous liaisons: the role of “danger” signals in the immune response to gene therapy. Blood. 2002;100:1133–40.

    Article  CAS  PubMed  Google Scholar 

  34. Früh K, Yang Y. Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol. 1999;11:76–81.

    Article  PubMed  Google Scholar 

  35. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, Zhang P. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology. 2012;217:385–93.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28:239–60.

    Article  CAS  PubMed  Google Scholar 

  38. Suzuki K, Mori A, Ishii KJ, Saito J, Singer DS, Klinman DM, et al. Activation of target-tissue immune-recognition molecules by double-stranded polynucleotides. Proc Natl Acad Sci USA. 1999;96:2285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bai H, Lester GMS, Petishnok LC, Dean DA. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci Rep. 2017;37:BSR20160616.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavcic D. Gene electrotransfer: a mechanistic perspective. Curr Gene Ther. 2016;16:98–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cannatà A, Ali H, Sinagra G, Giacca M. Gene therapy for the heart lessons learned and future perspectives. Circulation Res. 2020;126:1394–414.

    Article  PubMed  Google Scholar 

  42. Zundler S, Neurath MF. Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 2015;26:559–68.

    Article  CAS  PubMed  Google Scholar 

  43. Clanchy FI, Williams RO. Plasmid DNA as a safe gene delivery vehicle for treatment of chronic inflammatory disease. Expert Opin Biol Ther. 2008;8:1507–19.

    Article  CAS  PubMed  Google Scholar 

  44. Hicks KC, Chariou PL, Ozawa Y, Minnar CM, Knudson KM, Meyer TJ, et al. Tumor-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nat Commun. 2021;12:5151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taniyama Y, Azuma J, Kunugiza Y, Iekushi K, Rakugi H, et al. Therapeutic option of plasmid-DNA based gene transfer. Curr Top Med Chem. 2012;12:1630–7.

    Article  CAS  PubMed  Google Scholar 

  46. Tugues S, Burkhard SH, Ohs I, Vrohlings M, Nussbaum K, Vom Berg J. et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22:237–46.

    Article  CAS  PubMed  Google Scholar 

  47. Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovascular Res. 2011;91:565–76.

    Article  CAS  Google Scholar 

  48. Komel T, Omerzel M, Kamensek U, Znidar K, Lampreht Tratar U, Kranjc Brezar S, et al. Gene immunotherapy of colon carcinoma with IL-2 and IL-12 using gene electrotransfer. Int J Mol Sci. 2023;24:12900.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Greaney SK, Algazi AP, Tsai KK, Takamura KT, Chen L, Twitty CG, et al. Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol Res. 2020;8:246–54.

    Article  CAS  PubMed  Google Scholar 

  50. Telli ML, Nagata H, Wapnir I, Acharya CR, Zablotsky K, Fox BA, et al. Intratumoral plasmid IL12 expands CD8(+) T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to aAnti-PD-1 therapy. Clin Cancer Res. 2021;27:2481–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anwer K, Kelly FJ, Chu C, Fewell JG, Lewis D, Alvarez RD. Phase I trial of a formulated IL-12 plasmid in combination with carboplatin and docetaxel chemotherapy in the treatment of platinum-sensitive recurrent ovarian cancer. Gynecol Oncol. 2013;131:169–73.

    Article  CAS  PubMed  Google Scholar 

  52. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26:5896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Semenova N, Bosnjak M, Markelc B, Znidar K, Cemazar M, Heller L. Multiple cytosolic DNA sensors bind plasmid DNA after transfection. Nucleic Acids Res. 2019;47:10235–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Charette M, Marabelle A, Houot R. Turning tumour cells into antigen presenting cells: the next step to improve cancer immunotherapy? Eur J Cancer. 2016;68:134–47.

    Article  PubMed  Google Scholar 

  55. Bethune MT, Li XH, Yu J, McLaughlin J, Cheng D, Mathis C, et al. Isolation and characterization of NY-ESO-1-specific T cell receptors restricted on various MHC molecules. Proc Natl Acad Sci USA. 2018;115:E10702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst. 2013;105:1172–87.

    Article  CAS  PubMed  Google Scholar 

  57. Koşaloğlu-Yalçın Z, Lanka M, Frentzen A, Logandha Ramamoorthy Premlal A, Sidney J, Vaughan K, et al. Predicting T cell recognition of MHC class I restricted neoepitopes. Oncoimmunology. 2018;7:e1492508.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oner G, Ă–nder S, Karatay H, Ak N, TĂĽkenmez M, MĂĽslĂĽmanoÄźlu M, et al. Clinical impact of PD-L1 expression in triple-negative breast cancer patients with residual tumor burden after neoadjuvant chemotherapy. World J Surg Oncol. 2021;19:264.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48:434–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.

    Article  CAS  PubMed  Google Scholar 

  61. Diskin B, Adam S, Cassini MF, Sanchez G, Liria M, Aykut B, et al. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat Immunol. 2020;21:442–54.

    Article  CAS  PubMed  Google Scholar 

  62. DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246:379–400.

    Article  PubMed  Google Scholar 

  63. Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019;76:359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodríguez T, Méndez R, Del Campo A, Jiménez P, Aptsiauri N, Garrido F, et al. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer. 2007;7:34.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brea EJ, Oh CY, Manchado E, Budhu S, Gejman RS, Mo G, et al. Kinase regulation of human MHC class I molecule expression on cancer cells. Cancer Immunol Res. 2016;4:936–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gong W, Song Q, Lu X, Gong W, Zhao J, Min P, et al. Paclitaxel induced B7-H1 expression in cancer cells via the MAPK pathway. J Chemother. 2011;23:295–9.

    Article  CAS  PubMed  Google Scholar 

  67. Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse signaling by MHC-I molecules in immune and non-immune cell types. Front Immunol. 2020;11:605958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: Implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.

    Article  CAS  PubMed  Google Scholar 

  69. Lv D, Shen Y, Peng Y, Liu J, Miao F, Zhang J. Neuronal MHC Class I Expression is regulated by activity driven calcium signaling. PloS One. 2015;10:e0135223.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Balan M, Mier Y Teran E, Waaga-Gasser AM, Gasser M, Choueiri TK, Freeman G, et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem. 2015;290:8110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang Y, et al. YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget. 2017;8:114576–87.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Munkonge FM, Dean DA, Hillery E, Griesenbach U, Alton EW. Emerging significance of plasmid DNA nuclear import in gene therapy. Adv Drug Deliv Rev. 2003;55:749–60.

    Article  CAS  PubMed  Google Scholar 

  73. Vaughan EE, DeGiulio JV, Dean DA. Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther. 2006;6:671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gasiorowski JZ, Dean DA. Intranuclear trafficking of episomal DNA is transcription-dependent. Mol Ther. 2007;15:2132–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the U.S. National Institutes of Health, R01 CA186730. The funders had no role in study design, collection of data, decision to publish, or in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RH conceived and supervised the study and aided in interpretation of data. GS and JS performed experiments. GS designed, interpreted, analyzed, and interpreted data.

Corresponding author

Correspondence to Richard Heller.

Ethics declarations

Competing interests

Dr. R. Heller is an inventor on patents which cover the technology that was used in the work reported in this manuscript. In addition, Dr. R. Heller owns stock in Inovio Pharmaceuticals, Inc.

Ethical approval

All animal experiments were approved by the University of South Florida Institutional Animal Care and Use Committee (IACUC; protocols #IS00007033, #IS00011648).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Synowiec, J., Singh, J. et al. Modification of the tumor microenvironment enhances immunity with plasmid gene therapy. Cancer Gene Ther 31, 641–648 (2024). https://doi.org/10.1038/s41417-024-00728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00728-0

Search

Quick links