Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response

Abstract

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8+ T cells, and upregulated the expression of CD8+ effector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combined intratumoral delivery of DNA-based IL-12 and a DNA-based anti-PD-1 antibody in MC38 tumors.
Fig. 2: Combined intratumoral delivery of DNA-based IL-12 and DNA-based anti-PD-1 and anti-CTLA-4 antibodies in MC38 tumors.
Fig. 3: Effect of intratumoral delivery of DNA-based IL-12, anti-PD-1 and anti-CTLA-4 antibodies on MC38-infiltrating T lymphocytes.
Fig. 4: Combined intratumoral delivery of DNA-based IL-12 and DNA-based anti-PD-1 and anti-CTLA-4 antibodies in B16F10 tumors.

Similar content being viewed by others

References

  1. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl J Med. 2019;381:1535–46.

    Article  CAS  PubMed  Google Scholar 

  3. Kooshkaki O, Derakhshani A, Hosseinkhani N, Torabi M, Safaei S, Brunetti O, et al. Combination of ipilimumab and nivolumab in cancers: from clinical practice to ongoing clinical trials. Int J Mol Sci. 2020;21:4427.

    Article  CAS  PubMed Central  Google Scholar 

  4. Upadhaya S, Neftelino ST, Hodge JP, Oliva C, Campbell JR, Yu JX. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nat Rev Drug Disco. 2021;20:168–9.

    Article  CAS  Google Scholar 

  5. Middleton MR, Hoeller C, Michielin O, Robert C, Caramella C, Öhrling K, et al. Intratumoural immunotherapies for unresectable and metastatic melanoma: current status and future perspectives. Br J Cancer. 2020;123:885–97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Algazi AP, Twitty CG, Tsai KK, Le M, Pierce R, Browning E, et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin Cancer Res. 2020;26:2827–37.

    Article  CAS  PubMed  Google Scholar 

  7. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997;90:2541–8.

    CAS  PubMed  Google Scholar 

  8. Algazi A, Bhatia S, Agarwala S, Molina M, Lewis K, Faries M, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31:532–40.

    Article  CAS  PubMed  Google Scholar 

  9. Bhatia S, Longino NV, Miller NJ, Kulikauskas R, Iyer JG, Ibrani D, et al. Intratumoral delivery of plasmid IL12 via electroporation leads to regression of injected and noninjected tumors in Merkel cell carcinoma. Clin Cancer Res. 2020;26:596–607.

    Article  Google Scholar 

  10. Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet. 2015;89:235–62.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. Electroporation outperforms in vivo-jetPEI for intratumoral DNA-based reporter gene transfer. Sci Rep. 2020;10:19532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hollevoet K, Declerck PJ. State of play and clinical prospects of antibody gene transfer. J Transl Med. 2017;15:131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vermeire G, De Smidt E, Casteels P, Geukens N, Declerck P, Hollevoet K. DNA-based delivery of anti-DR5 nanobodies improves exposure and anti-tumor efficacy over protein-based administration. Cancer Gene Ther. 2021;28:828–38.

    Article  CAS  PubMed  Google Scholar 

  14. Jacobs L, De Smidt E, Geukens N, Declerck P, Hollevoet K. DNA-based delivery of checkpoint inhibitors in muscle and tumor enables long-term responses with distinct exposure. Mol Ther. 2020;28:1068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hollevoet K, De Smidt E, Geukens N, Declerck P. Prolonged in vivo expression and anti-tumor response of DNA-based anti-HER2 antibodies. Oncotarget. 2018;9:13623–36.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hollevoet K, De Vleeschauwer S, De Smidt E, Vermeire G, Geukens N, Declerck P. Bridging the clinical gap for DNA-based antibody therapy through translational studies in sheep. Hum Gene Ther. 2019;30:1431–43.

    Article  CAS  PubMed  Google Scholar 

  17. Vermeire G, De Smidt E, Geukens N, Williams JA, Declerck P, Hollevoet K. Improved potency and safety of DNA-encoded antibody therapeutics through plasmid backbone and expression cassette engineering. Hum Gene Ther. 2021;32:1200–9.

    Article  CAS  PubMed  Google Scholar 

  18. Campbell J, Canton DA, Pierce RH. Plasmid constructs for heterologous protein expression and methods of use. Patent US20190153469A1; 2019.

  19. Roca CP, Burton OT, Gergelits V, Prezzemolo T, Whyte CE, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 2018;49:1148–1161.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hewitt SL, Bailey D, Zielinski J, Apte A, Musenge F, Karp R, et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 2020;26:6284–98.

    Article  CAS  PubMed  Google Scholar 

  22. Wei SC, Anang NAS, Sharma R, Andrews MC, Reuben A, Levine JH, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc Natl Acad Sci USA. 2019;116:22699–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishihara J, Fukunaga K, Ishihara A, Larsson HM, Potin L, Hosseinchi P, et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci Transl Med. 2017;9:eaan040.

    Article  CAS  Google Scholar 

  24. Pai CS, Simons DM, Lu X, Evans M, Wei J, Wang YH, et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J Clin Invest. 2019;129:349–63.

    Article  PubMed  Google Scholar 

  25. Burkart C, Mukhopadhyay A, Shirley SA, Connolly RJ, Wright JH, Bahrami A, et al. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther. 2018;25:93–103.

    Article  CAS  PubMed  Google Scholar 

  26. Momin N, Mehta NK, Bennett NR, Ma L, Palmeri JR, Chinn MM, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med. 2019;11:eaaw2614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Selby MJ, Engelhardt JJ, Johnston RJ, Lu LS, Han M, Thudium K, et al. Preclinical development of ipilimumab and nivolumab combination immunotherapy: mouse tumor models, in vitro functional studies, and cynomolgus macaque toxicology. PLoS One. 2016;11:e0161779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Quetglas JI, Labiano S, Aznar M, Bolaños E, Azpilikueta A, Rodriguez I, et al. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res. 2015;3:449–54.

    Article  CAS  PubMed  Google Scholar 

  29. De Lucia M, Cotugno G, Bignone V, Garzia I, Nocchi L, Langone F, et al. Retargeted and multi-cytokine-armed herpes virus is a potent cancer endovaccine for local and systemic anti-tumor treatment. Mol Ther Oncolytics. 2020;19:253–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ge Y, Wang H, Ren J, Liu W, Chen L, Chen H, et al. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer. 2020;8:e000710.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1120–1133.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sin JI, Park JB, Lee IH, Park D, Choi YS, Choe J, et al. Intratumoral electroporation of IL-12 cDNA eradicates established melanomas by Trp2(180–188)-specific CD8+ CTLs in a perforin/granzyme-mediated and IFN-γ-dependent manner: application of Trp2(180–188) peptides. Cancer Immunol Immunother. 2012;61:1671–82.

    Article  CAS  PubMed  Google Scholar 

  33. Mukhopadhyay A, Wright J, Shirley S, Canton DA, Burkart C, Connolly RJ, et al. Characterization of abscopal effects of intratumoral electroporation-mediated IL-12 gene therapy. Gene Ther. 2019;26:1–15.

    Article  CAS  PubMed  Google Scholar 

  34. Shi G, Edelblute C, Arpag S, Lundberg C, Heller R. IL-12 gene electrotransfer triggers a change in immune response within mouse tumors. Cancers. 2018;10:498.

    Article  CAS  PubMed Central  Google Scholar 

  35. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107:4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 2015;194:438–45.

    Article  CAS  PubMed  Google Scholar 

  37. Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang P, Lee JS, Gartlan KH, Schuster IS, Comerford I, Varelias A, et al. Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci Immunol. 2017;2:eaah7152.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mazzoni A, Maggi L, Siracusa F, Ramazzotti M, Rossi MC, Santarlasci V, et al. Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur J Immunol. 2019;49:79–95.

    Article  CAS  PubMed  Google Scholar 

  40. Roessner PM, Llaó Cid L, Lupar E, Roider T, Bordas M, Schifflers C, et al. EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia. 2021;35:2311–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Blake SJ, Harjunpää H, Fairfax KA, Yong MC, Allen S, et al. Assessing immune-related adverse events of efficacious combination immunotherapies in preclinical models of cancer. Cancer Res. 2016;76:5288–301.

    Article  CAS  PubMed  Google Scholar 

  42. Adam K, Iuga A, Tocheva AS, Mor A. A novel mouse model for checkpoint inhibitor-induced adverse events. PLoS One. 2021;16:e0246168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong W, Myers JS, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bosnjak M, Jesenko T, Kamensek U, Sersa G, Lavrencak J, Heller L, et al. Electrotransfer of different control plasmids elicits different antitumor effectiveness in B16.F10 melanoma. Cancers. 2018;10:37.

    Article  PubMed Central  CAS  Google Scholar 

  45. Marrero B, Shirley S, Heller R. Delivery of interleukin-15 to B16 melanoma by electroporation leads to tumor regression and long-term survival. Technol Cancer Res Treat. 2014;13:551–60.

    PubMed  Google Scholar 

  46. Heller LC, Coppola D. Electrically mediated delivery of vector plasmid DNA elicits an antitumor effect. Gene Ther. 2002;9:1321–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Maya Imbrechts, Gerlanda Vella, Dr. Emanuela Pasciuto, and Prof. Susan Schlenner (KU Leuven, Leuven, Belgium) for their help with the preparation and their advice regarding the design of the flow cytometry experiment described in the current manuscript. We would also like to thank Prof. Damya Laoui and Aleksandar Murgaski (VUB, Brussels, Belgium) for sharing their protocol for tumor dissociation. Finally, we would like to thank all staff members of the Laboratory for Therapeutic and Diagnostic Antibodies (KU Leuven) for their help with the tissue processing for flow cytometry.

Funding

This research is supported by Research Foundation – Flanders (FWO: PhD mandate 1133220N to LJ, and research project G0E2117N to KH and PD) and CELSA (research project CELSA/19/030 to KH and PD).

Author information

Authors and Affiliations

Authors

Contributions

LJ, NG, KH, and PD designed the overall study and interpreted the results. LJ performed the experiments and analyzed the data. LY, SJ, and AL contributed to the design and the execution of the flow cytometry experiment and the interpretation of the respective results. LJ wrote the manuscript, which was reviewed and edited by KH and PD. All authors read and approved the manuscript for publication.

Corresponding authors

Correspondence to Kevin Hollevoet or Paul Declerck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, L., Yshii, L., Junius, S. et al. Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response. Cancer Gene Ther 29, 984–992 (2022). https://doi.org/10.1038/s41417-021-00403-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-021-00403-8

This article is cited by

Search

Quick links