Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting paraptosis in cancer: opportunities and challenges

Abstract

Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core molecular machinery and signaling regulation of paraptosis.
Fig. 2: Paraptosis in tumor biology.
Fig. 3: Paraptosis in targeted therapy.

Similar content being viewed by others

References

  1. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419:634–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Song X, Zhu S, Xie Y, Liu J, Sun L, Zeng D, et al. JTC801 Induces pH-dependent Death specifically in cancer cells and slows growth of tumors in Mice. Gastroenterology. 2018;154:1480–93.

    Article  CAS  PubMed  Google Scholar 

  4. Chen F, Zhu S, Kang R, Tang D, Liu J. ATP6V0D1 promotes alkaliptosis by blocking STAT3-mediated lysosomal pH homeostasis. Cell Rep. 2023;42:111911.

    Article  CAS  PubMed  Google Scholar 

  5. Xie Y, Zhu S, Zhong M, Yang M, Sun X, Liu J, et al. Inhibition of aurora kinase a induces necroptosis in pancreatic carcinoma. Gastroenterology. 2017;153:1429–1443.e5.

    Article  CAS  PubMed  Google Scholar 

  6. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Zhang R, Kang R, Tang D. Ferroptosis in gastrointestinal cancer: from mechanisms to implications. Cancer Lett. 2023;561:216147.

    Article  CAS  PubMed  Google Scholar 

  8. Muller T, Dewitz C, Schmitz J, Schroder AS, Brasen JH, Stockwell BR, et al. Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci. 2017;74:3631–45.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang R, Kang R, Tang D. Reductive cell death: the other side of the coin. Cancer Gene Ther. 2023;30:929–31.

    Article  CAS  PubMed  Google Scholar 

  10. Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19:2175–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin Z, Long F, Kang R, Klionsky DJ, Yang M, Tang D. The lipid basis of cell death and autophagy. Autophagy. 2023;28:1–20.

  12. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA. 2000;97:14376–81.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Liu X, Gu Y, Bian Y, Cai D, Li Y, Zhao Y, et al. Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis. 2021;26:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca(2+) Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry. 2022;61:639–55.

    Article  CAS  PubMed  Google Scholar 

  15. Chen X, Chen X, Zhang X, Wang L, Cao P, Rajamanickam V, et al. Curcuminoid B63 induces ROS-mediated paraptosis-like cell death by targeting TrxR1 in gastric cells. Redox Biol. 2019;21:101061.

    Article  CAS  PubMed  Google Scholar 

  16. Fontana F, Moretti RM, Raimondi M, Marzagalli M, Beretta G, Procacci P, et al. δ-Tocotrienol induces apoptosis, involving endoplasmic reticulum stress and autophagy, and paraptosis in prostate cancer cells. Cell Prolif. 2019;52:e12576.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang R, Kang R, Klionsky DJ, Tang D. Ion channels and transporters in autophagy. Autophagy. 2022;18:4–23.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Hager S, Pape VFS, Pósa V, Montsch B, Uhlik L, Szakács G, et al. High copper complex stability and slow reduction kinetics as key parameters for improved activity, paraptosis induction, and impact on drug-resistant cells of anticancer thiosemicarbazones. Antioxid Redox Signal. 2020;33:395–414.

    Article  CAS  PubMed  Google Scholar 

  19. Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, et al. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ. 2023;30:1097–154.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tang D, Lotze MT, Kang R, Zeh HJ. Apoptosis promotes early tumorigenesis. Oncogene. 2011;30:1851–4.

    Article  CAS  PubMed  Google Scholar 

  21. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arimoto-Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Carlsson MJ, Vollmer AS, Demuth P, Heylmann D, Reich D, Quarz C, et al. p53 triggers mitochondrial apoptosis following DNA damage-dependent replication stress by the hepatotoxin methyleugenol. Cell Death Dis. 2022;13:1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Casano AM, Albert M, Peri F. Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep. 2016;16:897–906.

    Article  CAS  PubMed  Google Scholar 

  25. Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, et al. Treatment-induced tumor dormancy through yap-mediated transcriptional reprogramming of the apoptotic pathway. Cancer cell. 2020;37:104–122.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bredesen DE, Mehlen P, Rabizadeh S. Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev. 2004;84:411–30.

    Article  CAS  PubMed  Google Scholar 

  27. Lee HJ, Lee DM, Seo MJ, Kang HC, Kwon SK, Choi KS. PSMD14 targeting triggers paraptosis in breast cancer cells by inducing proteasome inhibition and Ca(2+) imbalance. Int J Mol Sci. 2022;23:2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sang J, Li W, Diao HJ, Fan RZ, Huang JL, Gan L, et al. Jolkinolide B targets thioredoxin and glutathione systems to induce ROS-mediated paraptosis and apoptosis in bladder cancer cells. Cancer Lett. 2021;509:13–25.

    Article  CAS  PubMed  Google Scholar 

  29. Monel B, Compton AA, Bruel T, Amraoui S, Burlaud-Gaillard J, Roy N, et al. Zika virus induces massive cytoplasmic vacuolization and paraptosis-like death in infected cells. EMBO J. 2017;36:1653–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004;11:1066–75.

    Article  CAS  PubMed  Google Scholar 

  31. Mandula JK, Chang S, Mohamed E, Jimenez R, Sierra-Mondragon RA, Chang DC, et al. Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses. Cancer Cell. 2022;40:1145–1160.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep. 2017;20:1692–704.

    Article  CAS  PubMed  Google Scholar 

  33. Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med. 2019;133:162–8.

    Article  CAS  PubMed  Google Scholar 

  34. Livesey KM, Kang R, Zeh HJ 3rd, Lotze MT, Tang D. Direct molecular interactions between HMGB1 and TP53 in colorectal cancer. Autophagy. 2012;8:846–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res. 2012;72:1996–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ. 2023;30:876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.

    Article  CAS  PubMed  Google Scholar 

  39. Dhani S, Nagiah S, Naidoo DB, Chuturgoon AA. Fusaric Acid immunotoxicity and MAPK activation in normal peripheral blood mononuclear cells and Thp-1 cells. Sci Rep. 2017;7:3051.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  40. Schneider D, Gerhardt E, Bock J, Müller MM, Wolburg H, Lang F, et al. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death Differ. 2004;11:760–70.

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Song X, Kuang F, Zhang Q, Xie Y, Kang R, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Yin X, Cao L, Kang R, Yang M, Wang Z, Peng Y, et al. UV irradiation resistance-associated gene suppresses apoptosis by interfering with BAX activation. EMBO Rep. 2011;12:727–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu J, Kuang F, Kang R, Tang D. Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther. 2020;27:267–9.

    Article  PubMed  Google Scholar 

  44. Que D, Kuang F, Kang R, Tang D, Liu J. ACSS2-mediated NF-kappaB activation promotes alkaliptosis in human pancreatic cancer cells. Sci Rep. 2023;13:1483.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Chen F, Kang R, Liu J, Tang D. Mechanisms of alkaliptosis. Front Cell Dev Biol. 2023;11:1213995.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu J, Yang M, Kang R, Klionsky DJ, Tang D. Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy. 2019;15:2033–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng H, Liu Q, Wang S, Liu X, Ma M, Shen T, et al. Epimedokoreanin B inhibits the growth of lung cancer cells through endoplasmic reticulum stress-mediated paraptosis accompanied by autophagosome accumulation. Chem Biol Interact. 2022;366:110125.

    Article  CAS  PubMed  Google Scholar 

  48. Bury M, Girault A, Mégalizzi V, Spiegl-Kreinecker S, Mathieu V, Berger W, et al. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis. 2013;4:e561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li C, Zhang Y, Cheng X, Yuan H, Zhu S, Liu J, et al. PINK1 and PARK2 Suppress Pancreatic Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism. Dev Cell. 2018;46:441–455 e8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kang R, Zeng L, Xie Y, Yan Z, Zhou B, Cao L, et al. A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy. 2016;12:2374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al. Chalcomoracin is a potent anticancer agent acting through triggering Oxidative stress via a mitophagy- and paraptosis-dependent mechanism. Sci Rep. 2018;8:9566.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  52. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol cell Biol. 2020;21:421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Verma M, Choi J, Cottrell KA, Lavagnino Z, Thomas EN, Pavlovic-Djuranovic S, et al. A short translational ramp determines the efficiency of protein synthesis. Nat Commun. 2019;10:5774.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol cell Biol. 2010;11:113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Llácer JL, Hussain T, Saini AK, Nanda JS, Kaur S, Gordiyenko Y, et al. Translational initiation factor eIF5 replaces eIF1 on the 40S ribosomal subunit to promote start-codon recognition. eLife. 2018;7:e39273.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 2003;63:1684–95.

    CAS  PubMed  Google Scholar 

  57. Tang D, Kroemer G, Kang R. Oncogenic KRAS blockade therapy: renewed enthusiasm and persistent challenges. Mol Cancer. 2021;20:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu J, Kang R, Tang D. The KRAS-G12C inhibitor: activity and resistance. Cancer Gene Ther. 2022;29:875–8.

    Article  CAS  PubMed  Google Scholar 

  59. An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. A-Raf: a new star of the family of raf kinases. Crit Rev Biochem Mol Biol. 2015;50:520–31.

    Article  CAS  PubMed  Google Scholar 

  60. Li GN, Zhao XJ, Wang Z, Luo MS, Shi SN, Yan DM, et al. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther. 2022;7:317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 2012;482:186–91.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Seo MJ, Kim IY, Lee DM, Park YJ, Cho MY, Jin HJ, et al. Dual inhibition of thioredoxin reductase and proteasome is required for auranofin-induced paraptosis in breast cancer cells. Cell Death Dis. 2023;14:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang WB, Feng LX, Yue QX, Wu WY, Guan SH, Jiang BH, et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol, a natural compound with influence on proteasome, ER stress and Hsp90. J Cell Physiol. 2012;227:2196–206.

    Article  CAS  PubMed  Google Scholar 

  64. Lee DM, Kim IY, Seo MJ, Kwon MR, Choi KS. Nutlin-3 enhances the bortezomib sensitivity of p53-defective cancer cells by inducing paraptosis. Exp Mol Med. 2017;49:e365.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dang TT, Kim MJ, Lee YY, Le HT, Kim KH, Nam S, et al. Phosphorylation of EIF2S1 (eukaryotic translation initiation factor 2 subunit alpha) is indispensable for nuclear translocation of TFEB and TFE3 during ER stress. Autophagy. 2023;19:2111–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat cell Biol. 2013;15:481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu L, Shi J, Shen D, Zhai X, Liang D, Wang J, et al. Osimertinib induces paraptosis and TRIP13 confers resistance in glioblastoma cells. Cell Death Discov. 2023;9:333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, et al. TXNDC12 inhibits lipid peroxidation and ferroptosis. iSciense. 2023;132:108449.

    Google Scholar 

  69. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. 2017;36:5593–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 2021;13:e14351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zielke S, Kardo S, Zein L, Mari M, Covarrubias-Pinto A, Kinzler MN, et al. ATF4 links ER stress with reticulophagy in glioblastoma cells. Autophagy. 2021;17:2432–48.

    Article  CAS  PubMed  Google Scholar 

  72. Tang L, Yu Y, Deng W, Liu J, Wang Y, Ye F, et al. TXNDC12 inhibits lipid peroxidation and ferroptosis. iScience. 2023;26:108393.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Wang Y, Tang M. PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells. Sci Total Environ. 2020;710:136397.

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Liang W, Qi W, Geng Y, Wang L, Zhao J, Zhu K, et al. Necroptosis activates UPR sensors without disrupting their binding with GRP78. Proc Natl Acad Sci USA. 2021;118:e2110476118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhu S, Zhang Q, Sun X, Zeh HJ 3rd, Lotze MT, Kang R, et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 2017;77:2064–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raimondi M, Fontana F, Marzagalli M, Audano M, Beretta G, Procacci P, et al. Ca(2+) overload- and ROS-associated mitochondrial dysfunction contributes to δ-tocotrienol-mediated paraptosis in melanoma cells. Apoptosis. 2021;26:277–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petrillo S, Chiabrando D, Genova T, Fiorito V, Ingoglia G, Vinchi F, et al. Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death Differ. 2018;25:573–88.

    Article  CAS  PubMed  Google Scholar 

  78. Coelho DR, Palma FR, Paviani V, He C, Danes JM, Huang Y, et al. Nuclear-localized, iron-bound superoxide dismutase-2 antagonizes epithelial lineage programs to promote stemness of breast cancer cells via a histone demethylase activity. Proc Natl Acad Sci USA. 2022;119:e2110348119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McDowell SAC, Luo RBE, Arabzadeh A, Doré S, Bennett NC, Breton V, et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat Cancer. 2021;2:545–62.

    Article  CAS  PubMed  Google Scholar 

  80. Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang R, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun. 2020;11:6339.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Xie Y, Kang R, Klionsky DJ, Tang D. GPX4 in cell death, autophagy, and disease. Autophagy. 2023;19:2621–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang J, Xie Y, Sun X, Zeh HJ 3rd, Kang R, Lotze MT, et al. DAMPs, ageing, and cancer: The ‘DAMP Hypothesis. Ageing Res Rev. 2015;24:3–16.

    Article  CAS  PubMed  Google Scholar 

  84. Ye B, Zhou H, Chen Y, Luo W, Lin W, Zhao Y, et al. USP25 Ameliorates Pathological Cardiac Hypertrophy by Stabilizing SERCA2a in Cardiomyocytes. Circulation Res. 2023;132:465–80.

    Article  CAS  PubMed  Google Scholar 

  85. Decuypere JP, Parys JB, Bultynck G. ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally. Autophagy. 2015;11:1944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gincel D, Zaid H, Shoshan-Barmatz V. Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J. 2001;358:147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fan M, Zhang J, Tsai CW, Orlando BJ, Rodriguez M, Xu Y, et al. Structure and mechanism of the mitochondrial Ca(2+) uniporter holocomplex. Nature. 2020;582:129–33.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  88. García-Chacón LE, Nguyen KT, David G, Barrett EF. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release. J Physiol. 2006;574:663–75.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pathak T, Trebak M. Mitochondrial Ca(2+) signaling. Pharmacol Ther. 2018;192:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anastacio MM, Kanter EM, Makepeace CM, Keith AD, Zhang H, Schuessler RB, et al. Relationship between mitochondrial matrix volume and cellular volume in response to stress and the role of ATP-sensitive potassium channel. Circulation. 2013;128:S130–5.

    Article  CAS  PubMed  Google Scholar 

  91. Yoon MJ, Kim EH, Lim JH, Kwon TK, Choi KS. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells. Free Radic Biol Med. 2010;48:713–26.

    Article  CAS  PubMed  Google Scholar 

  92. Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, et al. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem-Biol Interact. 2018;283:59–74.

    Article  CAS  PubMed  Google Scholar 

  93. Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS. Simultaneous mitochondrial Ca(2+) overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett. 2012;324:197–209.

    Article  CAS  PubMed  Google Scholar 

  94. Yoon MJ, Lee AR, Jeong SA, Kim YS, Kim JY, Kwon YJ, et al. Release of Ca2+ from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells. Oncotarget. 2014;5:6816–31.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yumnam S, Hong GE, Raha S, Saralamma VV, Lee HJ, Lee WS, et al. Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2. J Cell Physiol. 2016;231:1261–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochem Biophys Res Commun. 2014;454:36–41.

    Article  CAS  PubMed  Google Scholar 

  97. Prins D, Michalak M. Organellar calcium buffers. Cold Spring Harb Perspect Biol. 2011;3:a004069.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mimnaugh EG, Xu W, Vos M, Yuan X, Neckers L. Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade. Mol Cancer Res. 2006;4:667–81.

    Article  CAS  PubMed  Google Scholar 

  99. Tardito S, Isella C, Medico E, Marchiò L, Bevilacqua E, Hatzoglou M, et al. The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem. 2009;284:24306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hoa NT, Zhang JG, Delgado CL, Myers MP, Callahan LL, Vandeusen G, et al. Human monocytes kill M-CSF-expressing glioma cells by BK channel activation. Lab Investig. 2007;87:115–29.

    Article  CAS  PubMed  Google Scholar 

  101. Lai YH, Lee PY, Lu CY, Liu YR, Wang SC, Liu CC, et al. Thrombospondin 1-induced exosomal proteins attenuate hypoxia-induced paraptosis in corneal epithelial cells and promote wound healing. FASEB J. 2021;35:e21200.

    Article  CAS  PubMed  Google Scholar 

  102. Rolver MG, Elingaard-Larsen LO, Andersen AP, Counillon L, Pedersen SF. Pyrazine ring-based Na(+)/H(+) exchanger (NHE) inhibitors potently inhibit cancer cell growth in 3D culture, independent of NHE1. Sci Rep. 2020;10:5800.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Chen X, Zhang X, Chen J, Yang Q, Yang L, Xu D, et al. Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol. 2017;815:147–55.

    Article  CAS  PubMed  Google Scholar 

  104. Zhu D, Chen C, Xia Y, Kong LY, Luo J. A Purified Resin Glycoside Fraction from Pharbitidis Semen Induces Paraptosis by Activating Chloride Intracellular Channel-1 in Human Colon Cancer Cells. Integr Cancer Ther. 2019;18:1534735418822120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Balachandran C, Yokoi K, Naito K, Haribabu J, Tamura Y, Umezawa M, et al. Cyclometalated Iridium(III) Complex-Cationic Peptide Hybrids Trigger Paraptosis in Cancer Cells via an Intracellular Ca(2+) Overload from the Endoplasmic Reticulum and a Decrease in Mitochondrial Membrane Potential. Molecules. 2021;26:7028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hanson S, Dharan A, PV J, Pal S, Nair BG, Kar R, et al. Paraptosis: a unique cell death mode for targeting cancer. Front Pharm. 2023;14:1159409.

    Article  CAS  Google Scholar 

  107. Xu CC, Lin YF, Huang MY, Zhang XL, Wang P, Huang MQ, et al. Paraptosis: a non-classical paradigm of cell death for cancer therapy. Acta Pharmacol Sin. 2023. https://doi.org/10.1038/s41401-023-01159-7.

  108. Gremke N, Polo P, Dort A, Schneikert J, Elmshäuser S, Brehm C, et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun. 2020;11:4684.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Chen F, Cai X, Kang R, Liu J, Tang D. Autophagy-dependent ferroptosis in cancer. Antioxidants Redox Signal. 2023;39:79–101.

    Article  CAS  Google Scholar 

  110. Tang D, Kroemer G, Kang R. Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology. 2023. https://doi.org/10.1097/HEP.0000000000000390.

  111. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen F, Kang R, Liu J, Tang D. The ACSL4 network regulates cell death and autophagy in diseases. Biology. 2023;12:864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen F, Kang R, Liu J, Tang D. The V-ATPases in cancer and cell death. Cancer Gene The. 2022;29:1529–41.

    Article  CAS  Google Scholar 

  114. Yang Y, Yuan H, Zhao L, Guo S, Hu S, Tian M, et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 2022;29:2177–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Huang J, Chen P, Liu K, Liu J, Zhou B, Wu R, et al. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut. 2021;70:890–9.

    Article  CAS  PubMed  Google Scholar 

  116. Yuan N, Song L, Zhang S, Lin W, Cao Y, Xu F, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015;100:345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kim IY, Shim MJ, Lee DM, Lee AR, Kim MA, Yoon MJ, et al. Loperamide overcomes the resistance of colon cancer cells to bortezomib by inducing CHOP-mediated paraptosis-like cell death. Biochem Pharmacol. 2019;162:41–54.

    Article  CAS  PubMed  Google Scholar 

  118. Li XQ, Ren J, Wang Y, Su JY, Zhu YM, Chen CG, et al. Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cell Oncol. 2021;44:135–50.

    Article  CAS  Google Scholar 

  119. Liu M, Xu C, Qin X, Liu W, Li D, Jia H, et al. DHW-221, a Dual PI3K/mTOR Inhibitor, Overcomes Multidrug Resistance by Targeting P-Glycoprotein (P-gp/ABCB1) and Akt-Mediated FOXO3a nuclear translocation in non-small cell lung cancer. Front Oncol. 2022;12:873649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy. 2021;17:1–382.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176:11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie Y, Li J, Kang R, Tang D. Interplay between lipid metabolism and autophagy. Front Cell Dev Biol. 2020;8:431.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  123. Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther. 2021;6:208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li J, Chen X, Kang R, Zeh H, Klionsky DJ, Tang D. Regulation and function of autophagy in pancreatic cancer. Autophagy. 2021;17:3275–96.

    Article  CAS  PubMed  Google Scholar 

  125. Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y, et al. DAMP-mediated autophagy contributes to drug resistance. Autophagy. 2011;7:112–4.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kang R, Tang D, Lotze MT, Zeh HJ 3rd. AGER/RAGE-mediated autophagy promotes pancreatic tumorigenesis and bioenergetics through the IL6-pSTAT3 pathway. Autophagy. 2012;8:989–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D. Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol. 2020;27:420–35.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26:605–16.

    Article  CAS  PubMed  Google Scholar 

  130. Li J, Liu J, Xu Y, Wu R, Chen X, Song X, et al. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy. 2021;17:3361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu J, Liu Y, Wang Y, Li C, Xie Y, Klionsky DJ, et al. TMEM164 is a new determinant of autophagy-dependent ferroptosis. Autophagy. 2023;19:945–56.

    Article  CAS  PubMed  Google Scholar 

  132. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536:479–83.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  134. Zhang C, Jiang Y, Zhang J, Huang J, Wang J. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells. Int J Mol Sci. 2015;16:14979–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhao H, Yan L, Xu X, Jiang C, Shi J, Zhang Y, et al. Potential of Bacillus subtilis lipopeptides in anti-cancer I: induction of apoptosis and paraptosis and inhibition of autophagy in K562 cells. AMB Express. 2018;8:78.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sang J, Gan L, Zou MF, Lin ZJ, Fan RZ, Huang JL, et al. Jolkinolide B sensitizes bladder cancer to mTOR inhibitors via dual inhibition of Akt signaling and autophagy. Cancer Lett. 2022;526:352–62.

    Article  CAS  PubMed  Google Scholar 

  137. Xie Y, Liu J, Kang R, Tang D. Mitophagy receptors in tumor biology. Front Cell Dev Biol. 2020;8:594203.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Fontana F, Raimondi M, Marzagalli M, Audano M, Beretta G, Procacci P, et al. Mitochondrial functional and structural impairment is involved in the antitumor activity of δ-tocotrienol in prostate cancer cells. Free Radic Biol Med. 2020;160:376–90.

    Article  CAS  PubMed  Google Scholar 

  139. Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, et al. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis. 2021;24:129–44.

    Article  CAS  PubMed  Google Scholar 

  140. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17:109–18.

    Article  CAS  PubMed  Google Scholar 

  141. Carpino G, Cardinale V, Di Giamberardino A, Overi D, Donsante S, Colasanti T, et al. Thrombospondin 1 and 2 along with PEDF inhibit angiogenesis and promote lymphangiogenesis in intrahepatic cholangiocarcinoma. J Hepatol. 2021;75:1377–86.

    Article  CAS  PubMed  Google Scholar 

  142. Hermann A, Wu G, Nedvetsky PI, Brücher VC, Egbring C, Bonse J, et al. The Hippo pathway component Wwc2 is a key regulator of embryonic development and angiogenesis in mice. Cell Death Dis. 2021;12:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu Z, Yang J, Chen Y, Chen C, Wang J, Lee YM, et al. P311 facilitates the angiogenesis and wound healing function of MSCs by Increasing VEGF Production. Front Immunol. 2022;13:821932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, et al. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis. 2020;23:325–38.

    Article  PubMed  Google Scholar 

  145. Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20:409–26.

    Article  CAS  PubMed  Google Scholar 

  146. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507:323–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Deng J, Paulus A, Fang DD, Manna A, Wang G, Wang H, et al. Lisaftoclax (APG-2575) Is a Novel BCL-2 Inhibitor with Robust Antitumor Activity in Preclinical Models of Hematologic Malignancy. Clin Cancer Res. 2022;28:5455–68.

    Article  CAS  PubMed  Google Scholar 

  148. Xu X, Mu L, Li L, Liang J, Zhang S, Jia L, et al. Imaging and tracing the pattern of adult ovarian angiogenesis implies a strategy against female reproductive aging. Sci Adv. 2022;8:eabi8683.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  149. van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379:1879–86.

    Article  PubMed  Google Scholar 

  150. Nel AE, Mei KC, Liao YP, Liu X. Multifunctional lipid bilayer nanocarriers for cancer immunotherapy in heterogeneous tumor microenvironments, combining immunogenic cell death stimuli with immune modulatory drugs. ACS nano. 2022;16:5184–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharmaceutica Sin B. 2022;12:3567–93.

    Article  CAS  Google Scholar 

  152. Chen W, Zhang Y, Yi HB, Wang F, Chu X, Jiang JH. Type I Photosensitizer Targeting G-Quadruplex RNA Elicits Augmented Immunity for Cancer Ablation. Angew Chem. 2023;62:e202300162.

    Article  CAS  Google Scholar 

  153. Zhang W, Gong C, Chen Z, Li M, Li Y, Gao J. Tumor microenvironment-activated cancer cell membrane-liposome hybrid nanoparticle-mediated synergistic metabolic therapy and chemotherapy for non-small cell lung cancer. J Nanobiotechnol. 2021;19:339.

    Article  CAS  Google Scholar 

  154. Heshmati Aghda N, Abdulsahib SM, Severson C, Lara EJ, Torres Hurtado S, Yildiz T, et al. Induction of immunogenic cell death of cancer cells through nanoparticle-mediated dual chemotherapy and photothermal therapy. Int J Pharma. 2020;589:119787.

    Article  CAS  Google Scholar 

  155. Zhou Y, Huang F, Yang Y, Wang P, Zhang Z, Tang Y et al. Paraptosis-Inducing Nanomedicine Overcomes Cancer Drug Resistance for a Potent Cancer Therapy. Small (Weinheim an der Bergstrasse, Germany) 14 (2018).

  156. Chen W, Yang W, Chen P, Huang Y, Li F. Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers. ACS Appl Mater Interfaces. 2018;10:41118–28.

    Article  CAS  PubMed  Google Scholar 

  157. Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 2023;19:1982–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin W, Hanson S, Han W, Zhang X, Yao N, Li H, et al. Well-defined star polymers for co-delivery of plasmid DNA and imiquimod to dendritic cells. Acta Biomaterial. 2017;48:378–89.

    Article  CAS  Google Scholar 

  159. Chung MF, Chia WT, Wan WL, Lin YJ, Sung HW. Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-responsive gas-generating carrier for localized inflammation inhibition. J Am Chem Soc. 2015;137:12462–5.

    Article  CAS  PubMed  Google Scholar 

  160. Price R, Poursaid A, Cappello J, Ghandehari H. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy. J Controlled Release. 2015;213:96–102.

    Article  CAS  Google Scholar 

  161. Han L, Wang Y, Huang X, Liu F, Ma C, Feng F, et al. Specific-oxygen-supply functionalized core-shell nanoparticles for smart mutual-promotion between photodynamic therapy and gambogic acid-induced chemotherapy. Biomaterials. 2020;257:120228.

    Article  CAS  PubMed  Google Scholar 

  162. Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, et al. Photodynamic therapy of cancer: an update. CA: a Cancer J Clinicians. 2011;61:250–81.

    Google Scholar 

  163. Zheng R, Liu Y, Yu B, Zhao L, Yang N, Chen A, et al. Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. J Colloid Interface Sci. 2022;622:298–308.

    Article  CAS  PubMed  ADS  Google Scholar 

  164. Kessel D. Exploring modes of photokilling by hypericin. Photochem Photobiol. 2020;96:1101–4.

    Article  CAS  PubMed  Google Scholar 

  165. Kessel D. Paraptosis and photodynamic therapy: a progress report. Photochem Photobiol. 2020;96:1096–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cho WJ, Kessel D, Rakowski J, Loughery B, Najy AJ, Pham T, et al. Photodynamic therapy as a potent radiosensitizer in head and neck squamous cell carcinoma. Cancers. 2021;13:1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kessel D, Reiners JJ. Photodynamic therapy: autophagy and mitophagy, apoptosis and paraptosis. Autophagy. 2020;16:2098–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Pierroz V, Rubbiani R, Gentili C, Patra M, Mari C, Gasser G, et al. Dual mode of cell death upon the photo-irradiation of a Ru(II) polypyridyl complex in interphase or mitosis. Chem Sci. 2016;7:6115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sagiv-Barfi I, Czerwinski DK, Shree T, Lohmeyer JJK, Levy R. Intratumoral immunotherapy relies on B and T cell collaboration. Sci Immunol. 2022;7:eabn5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Van Der Kraak L, Goel G, Ramanan K, Kaltenmeier C, Zhang L, Normolle DP, et al. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. J Immunother Cancer. 2016;4:65.

    Article  PubMed  Google Scholar 

  171. Marangoni F, Zhakyp A, Corsini M, Geels SN, Carrizosa E, Thelen M, et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell. 2021;184:3998–4015.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang Y, Tong C, Dai H, Wu Z, Han X, Guo Y, et al. Low-dose decitabine priming endows CAR T cells with enhanced and persistent antitumour potential via epigenetic reprogramming. Nat Commun. 2021;12:409.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  173. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  174. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  175. Liao J, Zhang Y, Huang M, Liang Z, Gong Y, Liu B, et al. Cyclometalated iridium(III) complexes induce immunogenic cell death in HepG2 cells via paraptosis. Bioorg Chem. 2023;140:106837.

    Article  CAS  PubMed  Google Scholar 

  176. Tang D, Kang R, Zeh HJ, Lotze MT. The multifunctional protein HMGB1: 50 years of discovery. Nat Rev Immunol. 2023;23:824–41.

    Article  CAS  PubMed  Google Scholar 

  177. Li J, Liu J, Zhou Z, Wu R, Chen X, Yu C, et al. Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer. Sci Transl Med. 2023;15:eadg3049.

    Article  CAS  PubMed  Google Scholar 

  178. Liu J, Liu Y, Wang Y, Kang R, Tang D. HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front Cell Dev Biol. 2022;10:996307.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kang R, Livesey KM, Zeh HJ 3rd, Lotze MT, Tang D. HMGB1 as an autophagy sensor in oxidative stress. Autophagy. 2011;7:904–6.

    Article  PubMed  Google Scholar 

  180. Sun X, Tang D. HMGB1-dependent and -independent autophagy. Autophagy. 2014;10:1873–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chen Y, Douglass T, Jeffes EW, Xu Q, Williams CC, Arpajirakul N, et al. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a “paraptosis”-induced pathway that promotes systemic immunity against intracranial T9 gliomas. Blood. 2002;100:1373–80.

    Article  CAS  PubMed  Google Scholar 

  183. Hoa N, Myers MP, Douglass TG, Zhang JG, Delgado C, Driggers L, et al. Molecular mechanisms of paraptosis induction: implications for a non-genetically modified tumor vaccine. PloS one. 2009;4:e4631.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  184. Kessel D. Pathways to Paraptosis After ER Photodamage in OVCAR-5 Cells. Photochem Photobiol. 2019;95:1239–42.

    Article  CAS  PubMed  Google Scholar 

  185. Yoon MJ, Kang YJ, Lee JA, Kim IY, Kim MA, Lee YS, et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin. Cell Death Dis. 2014;5:e1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, et al. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res. 2019;38:184.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Wang L, Gundelach JH, Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis. 2017;8:e2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li G, Tang D, Lotze MT. Menage a Trois in stress: DAMPs, redox and autophagy. Semin Cancer Biol. 2013;23:380–90.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Chen TS, Wang XP, Sun L, Wang LX, Xing D, Mok M. Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells. Cancer Lett. 2008;270:164–72.

    Article  CAS  PubMed  Google Scholar 

  190. Sun Q, Chen T, Wang X, Wei X. Taxol induces paraptosis independent of both protein synthesis and MAPK pathway. J Cell Physiol. 2010;222:421–32.

    Article  CAS  PubMed  Google Scholar 

  191. Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim et Biophys Acta. 2014;1843:2497–512.

    Article  CAS  Google Scholar 

  192. Kim SH, Shin HY, Kim YS, Kang JG, Kim CS, Ihm SH, et al. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV600E in FRO anaplastic thyroid carcinoma cells. Anticancer Res. 2014;34:4857–68.

    CAS  PubMed  Google Scholar 

  193. Zhang FJ, Yang JY, Mou YH, Sun BS, Wang JM, Wu CF. Oligomer procyanidins from grape seeds induce a paraptosis-like programmed cell death in human glioblastoma U-87 cells. Pharm Biol. 2010;48:883–90.

    Article  CAS  PubMed  Google Scholar 

  194. Wang Y, Zhu X, Yang Z, Zhao X. Honokiol induces caspase-independent paraptosis via reactive oxygen species production that is accompanied by apoptosis in leukemia cells. Biochem Biophys Res Commun. 2013;430:876–82.

    Article  CAS  PubMed  Google Scholar 

  195. Zhang JS, Li DM, He N, Liu YH, Wang CH, Jiang SQ, et al. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway. Toxicology. 2011;285:8–17.

    Article  CAS  PubMed  Google Scholar 

  196. Dai CH, Zhu LR, Wang Y, Tang XP, Du YJ, Chen YC, et al. Celastrol acts synergistically with afatinib to suppress non-small cell lung cancer cell proliferation by inducing paraptosis. J Cell Physiol. 2021;236:4538–54.

    Article  CAS  PubMed  Google Scholar 

  197. Nedungadi D, Binoy A, Pandurangan N, Pal S, Nair BG, Mishra N. 6-Shogaol induces caspase-independent paraptosis in cancer cells via proteasomal inhibition. Exp cell Res. 2018;364:243–51.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang SR, Zhang XC, Liang JF, Fang HM, Huang HX, Zhao YY, et al. Chalcomoracin inhibits cell proliferation and increases sensitivity to radiotherapy in human non-small cell lung cancer cells via inducing endoplasmic reticulum stress-mediated paraptosis. Acta Pharmacol Sin. 2020;41:825–34.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Seo MJ, Lee DM, Kim IY, Lee D, Choi MK, Lee JY, et al. Gambogic acid triggers vacuolization-associated cell death in cancer cells via disruption of thiol proteostasis. Cell Death Dis. 2019;10:187.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Binoy A, Nedungadi D, Katiyar N, Bose C, Shankarappa SA, Nair BG, et al. Plumbagin induces paraptosis in cancer cells by disrupting the sulfhydryl homeostasis and proteasomal function. Chem-Biol Interact. 2019;310:108733.

    Article  CAS  PubMed  Google Scholar 

  201. Biazi BI, Zanetti TA, Baranoski A, Corveloni AC, Mantovani MS.Cis-Nerolidol Induces Endoplasmic Reticulum Stress and Cell Death in Human Hepatocellular Carcinoma Cells through Extensive CYP2C19 and CYP1A2 Oxidation.Basic Clin Pharmacol Toxicol. 2017;121:334–41.

    Article  CAS  PubMed  Google Scholar 

  202. Singha PK, Pandeswara S, Venkatachalam MA, Saikumar P. Manumycin A inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death. Cell Death Dis. 2013;4:e457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wallenberg M, Misra S, Wasik AM, Marzano C, Björnstedt M, Gandin V, et al. Selenium induces a multi-targeted cell death process in addition to ROS formation. J Cell Mol Med. 2014;18:671–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kar R, Singha PK, Venkatachalam MA, Saikumar P. A novel role for MAP1 LC3 in nonautophagic cytoplasmic vacuolation death of cancer cells. Oncogene. 2009;28:2556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Korsnes MS, Espenes A, Hetland DL, Hermansen LC. Paraptosis-like cell death induced by yessotoxin. Toxicol Vitr. 2011;25:1764–70.

    Article  CAS  Google Scholar 

  206. Korsnes MS, Espenes A, Hermansen LC, Loader JI, Miles CO. Cytotoxic responses in BC3H1 myoblast cell lines exposed to 1-desulfoyessotoxin. Toxicol Vitr. 2013;27:1962–9.

    Article  CAS  Google Scholar 

  207. Wang CZ, Li B, Wen XD, Zhang Z, Yu C, Calway TD, et al. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention. BMC Complement Alternat Med. 2013;13:2.

    Article  Google Scholar 

  208. Zhao H, Xu X, Lei S, Shao D, Jiang C, Shi J, et al. Iturin A-like lipopeptides from Bacillus subtilis trigger apoptosis, paraptosis, and autophagy in Caco-2 cells. J Cell Physiol. 2019;234:6414–27.

    Article  CAS  PubMed  Google Scholar 

  209. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9:294–9.

    Article  CAS  PubMed  Google Scholar 

  210. Tian W, Li J, Su Z, Lan F, Li Z, Liang D, et al. Novel anthraquinone compounds induce cancer cell death through paraptosis. ACS Med Chem Lett. 2019;10:732–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Asare N, Landvik NE, Lagadic-Gossmann D, Rissel M, Tekpli X, Ask K, et al. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells. Toxicol Appl Pharmacol. 2008;230:175–86.

    Article  CAS  PubMed  Google Scholar 

  212. Wang L, Yu Y, Chow DC, Yan F, Hsu CC, Stossi F, et al. Characterization of a steroid receptor coactivator small molecule stimulator that overstimulates cancer cells and leads to cell stress and death. Cancer Cell. 2015;28:240–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wu XW, Zheng Y, Wang FX, Cao JJ, Zhang H, Zhang DY, et al. Anticancer Ir(III) -Aspirin conjugates for enhanced metabolic immuno-modulation and mitochondrial lifetime imaging. Chem (Weinh der Bergstr, Ger). 2019;25:7012–22.

    CAS  Google Scholar 

  214. Gandin V, Pellei M, Tisato F, Porchia M, Santini C, Marzano C. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling. J Cell Mol Med. 2012;16:142–51.

    Article  CAS  PubMed  Google Scholar 

  215. Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S. Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca(2+)-Dependent Pathway. ACS Omega. 2020;5:6983–7001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hager S, Korbula K, Bielec B, Grusch M, Pirker C, Schosserer M, et al. The thiosemicarbazone Me(2)NNMe(2) induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death Dis. 2018;9:1052.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Zhao L, Zhong B, Zhu Y, Zheng H, Wang X, Hou Y, et al. Nitrovin (difurazone), an antibacterial growth promoter, induces ROS-mediated paraptosis-like cell death by targeting thioredoxin reductase 1 (TrxR1). Biochem Pharmacol. 2023;210:115487.

    Article  CAS  PubMed  Google Scholar 

  218. Pyrczak-Felczykowska A, Reekie TA, Jąkalski M, Hać A, Malinowska M, Pawlik A, et al. The Isoxazole Derivative of Usnic Acid Induces an ER Stress Response in Breast Cancer Cells That Leads to Paraptosis-like Cell Death. Int J Mol Sci. 2022;23:1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JL was supported by the NSFC grants (3220055594 and 82372152).

Author information

Authors and Affiliations

Authors

Contributions

FC, HT and DT wrote the manuscript. RK and JL edited the manuscript. All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

Corresponding authors

Correspondence to Jiao Liu or Daolin Tang.

Ethics declarations

Competing interests

DT is an editorial board member of Cancer Gene Therapy. The authors declare no other conflicts of interest or financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Tang, H., Cai, X. et al. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 31, 349–363 (2024). https://doi.org/10.1038/s41417-023-00722-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00722-y

Search

Quick links