Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chimeric TβRII-SE/Fc overexpression by a lentiviral vector exerts strong antitumoral activity on colorectal cancer-derived cell lines in vitro and on xenografts

Abstract

The TGF signaling pathway is a key regulator of cancer progression. In this work, we report for the first time the antitumor activity of TβRII-SE/Fc, a novel peptibody whose targeting domain is comprised of the soluble endogenous isoform of the human TGF-β type II receptor (TβRII-SE). Overexpression of TβRIISE/Fc reduces in vitro cell proliferation and migration while inducing cell cycle arrest and apoptosis in human colorectal cancer-derived cell lines. Moreover, TβRII-SE/Fc overexpression reduces tumorigenicity in BALB/c nude athymic mice. Our results revealed that TRII-SE/Fc-expressing tumors were significantly reduced in size or were even incapable of developing. We also demonstrated that the novel peptibody has the ability to inhibit the canonical TGF-β and BMP signaling pathways while identifying SMAD-dependent and independent proteins involved in tumor progression that are modulated by TβRII-SE/Fc. These findings provide insights into the underlying mechanism responsible for the antitumor activity of TβRII-SE/Fc. Although more studies are required to demonstrate the effectiveness and safety of the novel peptibody as a new therapeutic for the treatment of cancer, our initial in vitro and in vivo results in human colorectal tumor-derived cell lines are highly encouraging. Our results may serve as the foundation for further research and development of a novel biopharmaceutical for oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TβRII-SE/Fc inhibits the cell cycle and induces apoptosis.
Fig. 2: Overexpression of TβRII-SE/Fc decreases cell proliferation and migration of human colorectal cancer-derived cell lines HCT116 and HT29.
Fig. 3: Overexpression of TβRII-SE/Fc reduces the tumorigenicity of human colorectal cancer-derived cells in xenograft models.
Fig. 4: TβRII-SE/Fc reduces cell proliferation and increases apoptosis in vivo.
Fig. 5: Molecular changes induced by TβRII-SE/Fc overexpression in HCT116 and HT29 cell-derived tumors.

Similar content being viewed by others

Data availability

The datasets generated or analysed during the current study are available from the corresponding authors on request.

References

  1. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023;72:338–44.

    Article  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–67.

    Article  PubMed  CAS  Google Scholar 

  3. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010;138:2073–87.e3.

    Article  PubMed  CAS  Google Scholar 

  4. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998;396:643–9.

    Article  PubMed  CAS  Google Scholar 

  5. Pino MS, Chung DC. Microsatellite instability in the management of colorectal cancer. Expert Rev Gastroenterol Hepatol. 2011;5:385–99.

    Article  PubMed  Google Scholar 

  6. Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999;59:320–4.

    PubMed  CAS  Google Scholar 

  7. Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, et al. Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res. 1995;55:5548–50.

    PubMed  CAS  Google Scholar 

  8. Wang J, Sun L, Myeroff L, Wang X, Gentry LE, Yang J, et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J Biol Chem. 1995;270:22044–9.

    Article  PubMed  CAS  Google Scholar 

  9. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–8.

    Article  PubMed  CAS  Google Scholar 

  10. David CJ, Massagué J. Contextual determinants of TGF-β action in development, immunity and cancer. Nat Rev Mol Cell Biol 2018;19:419–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019;50:924–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yang L, Moses HL. Transforming growth factor-β: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res. 2008;68:9107–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012;13:616–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. López-Casillas F, Wrana JL, Massagué J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell 1993;73:1435–44.

    Article  PubMed  Google Scholar 

  15. Heldin CH, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8:a022053.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jung B, Staudacher JJ, Beauchamp D. Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology 2017;152:36–52.

    Article  PubMed  CAS  Google Scholar 

  17. Hirai R, Fijita T. A human transforming growth factor-beta type II receptor that contains an insertion in the extracellular domain. Exp Cell Res 1996;223:135–41.

    Article  PubMed  CAS  Google Scholar 

  18. Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P. Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor. EMBO J. 2001;20:480–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Konrad L, Scheiber JA, Völck-Badouin E, Keilani MM, Laible L, Brandt H, et al. Alternative splicing of TGF-betas and their high-affinity receptors T beta RI, T beta RII and T beta RIII (betaglycan) reveal new variants in human prostatic cells. BMC Genomics. 2007;8:318.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bertolio MS, La Colla A, Carrea A, Romo A, Canziani G, Echarte SM, et al. A novel splice variant of human TGF-β Type II receptor encodes a soluble protein and its Fc-tagged version prevents liver fibrosis in vivo. Front Cell Dev Biol. 2021;9:690397.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang YE. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9:a022129.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Colak S, Ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer 2017;3:56–71.

    Article  PubMed  CAS  Google Scholar 

  23. Teixeira AF, Ten Dijke P, Zhu HJ. On-target anti-TGF-β therapies are not succeeding in clinical cancer treatments: what are remaining challenges? Front Cell Dev Biol 2020;8:605.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu S, Ren J, ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Itatani Y, Kawada K, Fujishita T, Kakizaki F, Hirai H, Matsumoto T, et al. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. Gastroenterology 2013;145:1064–75.e11.

    Article  PubMed  CAS  Google Scholar 

  26. Horibata S, Vo TV, Subramanian V, Thompson PR, Coonrod SA. Utilization of the soft agar colony formation assay to identify inhibitors of tumorigenicity in breast cancer cells. J Vis Exp. 2015;99:e52727.

    Google Scholar 

  27. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:320–9.

    Article  PubMed  CAS  Google Scholar 

  28. Akhurst RJ. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9:a022301.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hata A, Chen YG. TGF-β signaling from receptors to smads. Cold Spring Harb Perspect Biol. 2016;8:a022061.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fink SP, Mikkola D, Willson JK, Markowitz S. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 2003;22:1317–23.

    Article  PubMed  CAS  Google Scholar 

  31. Stolfi C, De Simone V, Colantoni A, Franzè E, Ribichini E, Fantini MC, et al. A functional role for Smad7 in sustaining colon cancer cell growth and survival. Cell Death Dis. 2014;5:e1073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Li Q, Zou C, Zou C, Han Z, Xiao H, Wei H, et al. MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting SMAD7. Cancer Lett. 2013;335:168–74.

    Article  PubMed  CAS  Google Scholar 

  33. von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger EPSmad3. and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem. 2000;275:11320–6.

    Article  Google Scholar 

  34. de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol. 2020;55:691–715.

    Article  PubMed  Google Scholar 

  35. Edlund S, Lee SY, Grimsby S, Zhang S, Aspenström P, Heldin CH, et al. Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis. Mol Cell Biol. 2005;25:1475–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tang Y, Liu Z, Zhao L, Clemens TL, Cao X. Smad7 stabilizes beta-catenin binding to E-cadherin complex and promotes cell-cell adhesion. J Biol Chem. 2008;283:23956–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14:77–91.

    Article  PubMed  CAS  Google Scholar 

  38. Ullmann P, Rodriguez F, Schmitz M, Meurer SK, Qureshi-Baig K, Felten P, et al. The miR-371373 cluster represses colon cancer initiation and metastatic colonization by inhibiting the TGFBR2/ID1 signaling axis. Cancer Res. 2018;78:3793–808.

    Article  PubMed  CAS  Google Scholar 

  39. Scandura JM, Boccuni P, Massagué J, Nimer SD. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA. 2004;101:15231–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Urano T, Yashiroda H, Muraoka M, Tanaka K, Hosoi T, Inoue S, et al. P57(Kip2) is degraded through the proteasome in osteoblasts stimulated to proliferation by transforming growth factor beta1. J Biol Chem. 1999;274:12197–200.

    Article  PubMed  CAS  Google Scholar 

  41. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S. Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with SMADs. Cell 2003;113:301–14.

    Article  PubMed  CAS  Google Scholar 

  42. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–10.

    Article  PubMed  CAS  Google Scholar 

  43. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55:5187–90.

    PubMed  CAS  Google Scholar 

  44. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM. P53 regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA. 1999;96:2147–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 1995;9:935–44.

    Article  PubMed  CAS  Google Scholar 

  46. Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci USA. 1995;92:5545–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA. 2006;103:976–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ravizza R, Gariboldi MB, Passarelli L, Monti E. Role of the p53/p21 system in the response of human colon carcinoma cells to Doxorubicin. BMC cancer. 2004;4:92.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zirbes TK, Baldus SE, Moenig SP, Nolden S, Kunze D, Shafizadeh ST, et al. Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int Jour Can. 2000;89:14–18.

    Article  CAS  Google Scholar 

  50. Ijichi H, Otsuka M, Tateishi K, Ikenoue T, Kawakami T, Kanai F, et al. Smad4-independent regulation of p21/WAF1 by transforming growth factor-beta. Oncogene 2004;23:1043–51.

    Article  PubMed  CAS  Google Scholar 

  51. Edlund S, Bu S, Schuster N, Aspenström P, Heuchel R, Heldin NE, et al. Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell. 2003;14:529–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mulder KM. Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev. 2000;11:23–35.

    Article  PubMed  CAS  Google Scholar 

  53. Tarhouni-Jabberi S, Zakraoui O, Ioannou E, Riahi-Chebbi I, Haoues M, Roussis V, et al. Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-κB Signaling. Mar drugs. 2017;15:221.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sugiura R, Satoh R, Takasaki T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021;10:2509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat. 2002;5:234–48.

    Article  PubMed  CAS  Google Scholar 

  56. Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer cell. 2008;14:458–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015;6:565–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chung J, Huda MN, Shin Y, Han S, Akter S, Kang I, et al. Correlation between oxidative stress and transforming growth factor-beta in cancers. Int J Mol Sci. 2021;22:13181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Han Z, Kang D, Joo Y, Lee J, Oh GH, Choi S, et al. TGF-β downregulation-induced cancer cell death is finely regulated by the SAPK signaling cascade. Exp Mol Med. 2018;50:1–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gulley JL, Schlom J, Barcellos-Hoff MH, Wang XJ, Seoane J, Audhuy F, et al. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Mol Oncol. 2022;16:2117–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Li Baojie from the Bio-X Institutes, Shanghai Jiao Tong University for the facilities and reagents provided for this project.

Funding

This work was supported, in part, by the National Scientific and Technical Research Council of Argentina (CONICET) research grants PIP 2013 GI, 11220120100202CO, and PIP 2017 GI, 11220170100573CO, and PICT-2020-SERIE A-03635, from Agencia I + D + i de Argentina, as well as funding from Fundación Florencio Fiorini (Academia Nacional de Medicina, Buenos Aires, Argentina).

Author information

Authors and Affiliations

Authors

Contributions

AR and RAD conceived and designed the study. AR, GY, and TMR performed the experiments and analyses. AR and RAD wrote the manuscript. All authors contributed to the manuscript revision and read and approved the submitted version.

Corresponding author

Correspondence to Ricardo Alfredo Dewey.

Ethics declarations

Competing interests

TMR and RAD are co-inventors of the patent family “Isoform of the TGF-beta receptor II”, US10233227B2 (granted in the USA), EP3082846B1 (granted by the European Patent Office), ES2749615T3 (granted in Spain), and AR098827A1 (pending in Argentina). AR, TMR, and RAD are co-inventors on the patent application, “TGF-receptor II isoform, fusion peptide, methods of treatment, and methods in vitro,” US11072647B2 (granted in the United States) and pending in China (CN111100875A1), Australia (AU2019240609A1), Canada (Act 3.060.686), and Argentina (AR116885A1). Patents are owned by CONICET and Fundación Articular and were licensed to RAD BIO S.A.S. by the intellectual property license agreement 2019-890-APNDIR ♯CONICET. AR has shareholder equity in RAD BIO S.A.S., and RAD is a co-founder, and shareholder of RAD BIO S.A.S.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romo, A., Rodríguez, T.M., Yu, G. et al. Chimeric TβRII-SE/Fc overexpression by a lentiviral vector exerts strong antitumoral activity on colorectal cancer-derived cell lines in vitro and on xenografts. Cancer Gene Ther 31, 174–185 (2024). https://doi.org/10.1038/s41417-023-00694-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00694-z

Search

Quick links