Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arvanil induces ferroptosis of hepatocellular carcinoma by binding to MICU1

Abstract

Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate that requires research and improved treatment strategies. Chemotherapy is still one of the main methods of HCC treatment, but it may lead to drug resistance and damage to normal organs. Capsaicin, a naturally occurring active ingredient in chili peppers, has demonstrated anticancer properties in a variety of malignant tumor cell lines. However, the anti-cancer mechanism of capsaicin needs to be further explored in HCC. In this study, we utilized Arvanil, a non-stimulating synthetic capsaicin analog, in place of capsaicin. We found that Arvanil induced high mitochondrial calcium flow, which contributed to a decrease in mitochondrial membrane permeability transition pore (mPTP) opening and oxidative phosphorylation levels, ultimately triggering cellular ferroptosis by live cells in real time with a high content screening (HCS) platform and confocal microscopy. It was further confirmed by vina molecular docking and point mutation experiments that Arvanil directly binds to two amino acid sites of mitochondrial calcium uptake protein 1 (MICU1), namely Ser47 and Phe128, to trigger this process, which in turn inhibits the growth of HCC cells. In addition, it was confirmed that Arvanil enhances cisplatin chemosensitivity by inducing HCC cellular ferroptosis in vivo. In conclusion, our study suggests that Arvanil induces ferroptosis in HCC cells and is a candidate drug for the treatment of HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Arvanil induces high mitochondrial calcium flow and reduces mitochondrial membrane potential.
Fig. 2: Arvanil modulates mitochondrial function in HCC cells.
Fig. 3: Arvanil induces ferroptosis in HCC cells by regulating mitochondrial function.
Fig. 4: Arvanil exerts biological effects by binding to MICU1.
Fig. 5: Arvanil induces ferroptosis in HCC cells by binding to MICU1.
Fig. 6: Arvanil-induced ferroptosis increases cisplatin chemosensitivity in vivo.

Similar content being viewed by others

Data availability

This study includes no data deposited in external repositories. Structure of MICU1 (PDB: 4xsj) from PDB database: https://www.rcsb.org/structure/4XSJ.Tertiary structure of Arvanil (Compound CID: 6449767) obtained from PubChem: https://pubchem.ncbi.nlmnihgov/# uery=Avanil.

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    Article  PubMed  Google Scholar 

  2. Anwanwan D, Singh K, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020;1873:188314.

    Article  PubMed  CAS  Google Scholar 

  3. Llovet M, De Baere T, Kulik L, Haber K, Greten F, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021;18:293–313.

    Article  PubMed  CAS  Google Scholar 

  4. Llovet M, Montal R, Sia D, Finn S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol. 2018;15:599–616.

    Article  PubMed  Google Scholar 

  5. Kastan B, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–23.

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  PubMed  CAS  Google Scholar 

  7. Talmadge E, Fidler J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Clark R, Lee H. Anticancer properties of capsaicin against human cancer. Anticancer Res. 2016;36:837–43.

    PubMed  CAS  Google Scholar 

  9. Chen C, Ko C, Yen C, Chen Y, Lin C, Ma F, et al. Capsaicin enhances erlotinib-induced cytotoxicity via AKT inactivation and excision repair cross-complementary 1 (ERCC1) down-regulation in human lung cancer cells. Toxicol Res. 2019;8:459–70.

    Article  CAS  Google Scholar 

  10. Han H, Park K, Nakamura H, Ban S. Capsaicin inhibits HIF-1alpha accumulation through suppression of mitochondrial respiration in lung cancer cells. Biomed Pharmacother. 2022;146:112500.

    Article  PubMed  CAS  Google Scholar 

  11. Hurley D, Akers T, Friedman R, Nolan A, Brown C, Dasgupta P. Non-pungent long chain capsaicin-analogs arvanil and olvanil display better anti-invasive activity than capsaicin in human small cell lung cancers. Cell Adh Migr. 2017;11:80–97.

    Article  PubMed  CAS  Google Scholar 

  12. Dixon J, Lemberg M, Lamprecht R, Skouta R, Zaitsev M, Gleason E, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li P, Jiang M, Li K, Li H, Zhou Y, Xiao X, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol. 2021;22:1107–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vasan K, Werner M, Chandel S. Mitochondrial metabolism as a target for cancer therapy. Cell Metabol. 2020;32:341–52.

    Article  CAS  Google Scholar 

  15. Zhao L, Tang M, Bode M, Liao W, Cao Y. ANTs and cancer: emerging pathogenesis, mechanisms, and perspectives. Biochim Biophys Acta. 2021;1875:188485.

    CAS  Google Scholar 

  16. Bonora M, Giorgi C, Pinton P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev. Mol Cell Biol. 2022;23:266–85.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao L, Deng X, Li Y, Hu J, Xie L, Shi F, et al. Conformational change of adenine nucleotide translocase-1 mediates cisplatin resistance induced by EBV-LMP1. EMBO Mol Med. 2021;13:e14072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, et al. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc. 2021;96:2489–521.

    Article  PubMed  CAS  Google Scholar 

  19. Garbincius F, Elrod W. Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 2022;102:893–992.

    Article  PubMed  CAS  Google Scholar 

  20. Gao Y, Hou R, Fei Q, Fang L, Han Y, Cai R, et al. The Three-Herb Formula Shuang-Huang-Lian stabilizes mast cells through activation of mitochondrial calcium uniporter. Sci Rep. 2017;7:38736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bermont F, Hermant A, Benninga R, Chabert C, Jacot G, Santo-Domingo J, et al. Targeting mitochondrial calcium uptake with the natural flavonol kaempferol, to promote metabolism/secretion coupling in pancreatic β-cells. Nutrients. 2020;12:538.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee S, Kang S, Lee S, Nicolova S, Kim A. Involvement of NADPH oxidase-mediated generation of reactive oxygen species in the apototic cell death by capsaicin in HepG2 human hepatoma cells. Free Radic Res. 2004;38:405–12.

    Article  PubMed  CAS  Google Scholar 

  23. Vendrely V, Peuchant E, Buscail E, Moranvillier I, Rousseau B, Bedel A, et al. Resveratrol and capsaicin used together as food complements reduce tumor growth and rescue full efficiency of low dose gemcitabine in a pancreatic cancer model. Cancer Lett. 2017;390:91–102.

    Article  PubMed  CAS  Google Scholar 

  24. Vendrely V, Amintas S, Noel C, Moranvillier I, Lamrissi I, Rousseau B, et al. Combination treatment of resveratrol and capsaicin radiosensitizes pancreatic tumor cells by unbalancing DNA repair response to radiotherapy towards cell death. Cancer Lett. 2019;451:1–10.

    Article  PubMed  CAS  Google Scholar 

  25. Thoennissen H, O’Kelly J, Lu D, Iwanski B, La T, Abbassi S, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010;29:285–96.

    Article  PubMed  CAS  Google Scholar 

  26. Lv L, Zhuang X, Zhang W, Tian N, Dang Z, Wu Y. Capsaicin-loaded folic acid-conjugated lipid nanoparticles for enhanced therapeutic efficacy in ovarian cancers. Biomed Pharmacother. 2017;91:999–1005.

    Article  PubMed  CAS  Google Scholar 

  27. Liu Y, Wei G, Li S. Capsaicin induces ferroptosis of NSCLC by regulating SLC7A11/GPX4 signaling in vitro. Sci Rep. 2022;12:11996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huang P, Chen C, Wu C, Chen T, Tang Y, Ho T, et al. Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res. 2009;29:165–74.

    PubMed  CAS  Google Scholar 

Download references

Funding

Funding

This study was funded by the National Natural Science Foundation of China (No.82103653), the China Postdoctoral Science Foundation (No.2021M693553), the Natural Science Foundation of Hunan Province (No.2022JJ40659 and No.2022JJ40686).

Author information

Authors and Affiliations

Authors

Contributions

Supervision: LL and XD; study concept and design: LZ and LL; drafting of the manuscript: LZ, XD, NL and YG; collection, analysis, or interpretation of data: LZ, YG, NL and XD; technical or material support: LZ and XD.

Corresponding author

Correspondence to Liling Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Gui, Y., Zhao, L. et al. Arvanil induces ferroptosis of hepatocellular carcinoma by binding to MICU1. Cancer Gene Ther 31, 148–157 (2024). https://doi.org/10.1038/s41417-023-00690-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00690-3

Search

Quick links