Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MBD1 protects replication fork stability by recruiting PARP1 and controlling transcription-replication conflicts

Abstract

The replication-stress response is essential to ensure the faithful transmission of genetic information to daughter cells. Although several stress-resolution pathways have been identified to deal with replication stress, the precise regulatory mechanisms for replication fork stability are not fully understood. Our study identified Methyl-CpG Binding Domain 1 (MBD1) as essential for the maintaining genomic stability and protecting stalled replication forks in mammalian cells. Depletion of MBD1 increases DNA lesions and sensitivity to replication stress. Mechanistically, we found that loss of MBD1 leads to the dissociation of Poly(ADP-ribose) polymerase 1 (PARP1) from the replication fork, potentially accelerating fork progression and resulting in higher levels of transcription-replication conflicts (T-R conflicts). Using a proximity ligation assay combined with 5-ethynyl-2′-deoxyuridine, we revealed that the MBD1 and PARP1 proteins were recruited to stalled forks under hydroxyurea (HU) treatment. In addition, our study showed that the level of R-loops also increased in MBD1-delated cells. Without MBD1, stalled replication forks resulting from T-R conflicts were primarily degraded by the DNA2 nuclease. Our findings shed light on a new aspect of MBD1 in maintaining genome stability and providing insights into the mechanisms underlying replication stress response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic deletion of MBD1 results in genome instability.
Fig. 2: Loss of MBD1 increases the sensitivity of cells to replication stress.
Fig. 3: MBD1 maintains replication fork stability in a RAD51 independent manner.
Fig. 4: MBD1 interacts with PARP1 and the interaction is modulated by replication stress and PARylation.
Fig. 5: MBD1 regulates replication fork speed by promoting PARP1 association with replication fork.
Fig. 6: MBD1 participates in R-loop-associated transcription-replication conflicts.
Fig. 7: MBD1 is a potential target to improve the effectiveness of chemotherapy.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Song HY, Shen R, Mahasin H, Guo YN, Wang DG. DNA replication: mechanisms and therapeutic interventions for diseases. MedComm. 2023;4:e210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kondratick CM, Washington MT, Spies M. Making choices: DNA replication fork recovery mechanisms. Semin Cell Dev Biol. 2021;113:27–37.

    Article  PubMed  CAS  Google Scholar 

  3. Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res. 2014;329:85–93.

    Article  PubMed  CAS  Google Scholar 

  4. Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 2018;25:446–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2014;16:2–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Rickman K, Smogorzewska A. Advances in understanding DNA processing and protection at stalled replication forks. J Cell Biol. 2019;218:1096–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Follonier C, Oehler J, Herrador R, Lopes M. Friedreich’s ataxia-associated GAA repeats induce replication-fork reversal and unusual molecular junctions. Nat Struct Mol Biol. 2013;20:486–94.

    Article  PubMed  CAS  Google Scholar 

  8. Ray Chaudhuri A, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D, Bermejo R, et al. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol. 2012;19:417–23.

    Article  PubMed  CAS  Google Scholar 

  9. Lopper M, Boonsombat R, Sandler SJ, Keck JL. A hand-off mechanism for primosome assembly in replication restart. Mol Cell. 2007;26:781–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22:106–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535:382–7.

    Article  PubMed  Google Scholar 

  13. Higgs MR, Reynolds JJ, Winczura A, Blackford AN, Borel V, Miller ES, et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol Cell. 2015;59:462–77.

    Article  PubMed  CAS  Google Scholar 

  14. Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol Cell. 2018;69:412–25.e416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cortez D. Preventing replication fork collapse to maintain genome integrity. DNA Repair. 2015;32:149–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage Responses. Cell. 2017;170:774–86.e719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:860.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shiu J-L, Wu C-K, Chang S-B, Sun Y-J, Chen Y-J, Lai C-C, et al. The HLTF–PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis. 2020;9:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, et al. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol. 2013;20:347–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. The importance of poly(ADP-Ribose) polymerase as a sensor of unligated okazaki fragments during DNA replication. Mol Cell. 2018;71:319–31.e313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. High speed of fork progression induces DNA replication stress and genomic instability. Nature. 2018;559:279–84.

    Article  PubMed  CAS  Google Scholar 

  23. Genois M-M, Gagné J-P, Yasuhara T, Jackson J, Saxena S, Langelier M-F, et al. CARM1 regulates replication fork speed and stress response by stimulating PARP1. Mol Cell. 2021;81:784–800.e788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G, Sun D, et al. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell. 2021;184:352–69.e323.

    Article  PubMed  CAS  Google Scholar 

  25. Theulot B, Lacroix L, Arbona JM, Millot GA, Jean E, Cruaud C, et al. Genome-wide mapping of individual replication fork velocities using nanopore sequencing. Nat Commun. 2022;13:3295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bowry A, Kelly RDW, Petermann E. Hypertranscription and replication stress in cancer. Trends Cancer. 2021;7:863–77.

    Article  PubMed  CAS  Google Scholar 

  27. Xu X, Ni K, He Y, Ren J, Sun C, Liu Y, et al. The epigenetic regulator LSH maintains fork protection and genomic stability via MacroH2A deposition and RAD51 filament formation. Nat Commun. 2021;12:3520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wade PA. Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene. 2001;20:3166–73.

    Article  PubMed  CAS  Google Scholar 

  29. Clouaire T, Stancheva I. Methyl-CpG binding proteins: specialized transcriptional repressors or structural components of chromatin? Cell Mol Life Sci. 2008;65:1509–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li L, Chen BF, Chan WY. An epigenetic regulator: methyl-CpG-binding domain protein 1 (MBD1). Int J Mol Sci. 2015;16:5125–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H et al. MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol. 2003;23:2834–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Xu J, Zhu W, Xu W, Cui X, Chen L, Ji S, et al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair. Int J Oncol. 2013;42:2046–52.

    Article  PubMed  CAS  Google Scholar 

  33. Olivieri M, Cho T, Alvarez-Quilon A, Li K, Schellenberg MJ, Zimmermann M, et al. A genetic map of the response to DNA damage in human cells. Cell. 2020;182:481–96.e421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Clouaire T, de Las Heras JI, Merusi C, Stancheva I. Recruitment of MBD1 to target genes requires sequence-specific interaction of the MBD domain with methylated DNA. Nucleic Acids Res. 2010;38:4620–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Byrum AK, Carvajal-Maldonado D, Mudge MC, Valle-Garcia D, Majid MC, Patel R, et al. Mitotic regulators TPX2 and Aurora A protect DNA forks during replication stress by counteracting 53BP1 function. J Cell Biol. 2019;218:422–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol. 2022;23:521–40.

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura K, Kustatscher G, Alabert C, Hodl M, Forne I, Volker-Albert M, et al. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol Cell. 2021;81:1084–99.

  38. Sukackaite R, Cornacchia D, Jensen MR, Mas PJ, Blackledge M, Enervald E, et al. Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci Rep. 2017;7:2119.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hameed UF, Lim J, Zhang Q, Wasik MA, Yang D, Swaminathan K. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner. Sci Rep. 2014;4:4896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, et al. The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet. 2008;17:2047–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jorgensen HF, Ben-Porath I, Bird AP. Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol. 2004;24:3387–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, et al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem. 2003;278:24132–8.

    Article  PubMed  CAS  Google Scholar 

  43. Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 1998;18:6538–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Chappidi N, Nascakova Z, Boleslavska B, Zellweger R, Isik E, Andrs M, et al. Fork cleavage-religation cycle and active transcription mediate replication restart after fork stalling at co-transcriptional R-loops. Mol Cell. 2020;77:528–41.e528.

    Article  PubMed  CAS  Google Scholar 

  45. Garcia-Muse T, Aguilera A. Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol. 2016;17:553–63.

    Article  PubMed  CAS  Google Scholar 

  46. Thangavel S, Berti M, Levikova M, Pinto C, Gomathinayagam S, Vujanovic M, et al. DNA2 drives processing and restart of reversed replication forks in human cells. J Cell Biol. 2015;208:545–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Higgs MR, Sato K, Reynolds JJ, Begum S, Bayley R, Goula A, et al. Histone methylation by SETD1A protects nascent DNA through the nucleosome chaperone activity of FANCD2. Mol Cell. 2018;71:25–41.e26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Chen J, Li P, Song L, Bai L, Huen MSY, Liu Y et al. 53BP1 loss rescues embryonic lethality but not genomic instability of BRCA1 total knockout mice. Cell Death Differ. 2020;27:2552–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gyorffy B, Lánczky A, Szállási Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19:197–208.

    Article  PubMed  CAS  Google Scholar 

  50. Berti M, Cortez D, Lopes M. The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol. 2020;21:633–51.

    Article  PubMed  CAS  Google Scholar 

  51. Fujita N, Shimotake N, Ohki I, Chiba T, Saya H, Shirakawa M et al. Mechanism of transcriptional regulation by methyl-CpG binding protein MBD1. Mol Cell Biol. 2000;20:5107–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Hamperl S, Cimprich KA. Conflict resolution in the genome: how transcription and replication make it work. Cell. 2016;167:1455–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Goren A, Cedar H. Replicating by the clock. Nat Rev Mol Cell Biol. 2003;4:25–32.

    Article  PubMed  CAS  Google Scholar 

  54. Kowalczykowski SC. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci. 2000;25:156–65.

    Article  PubMed  CAS  Google Scholar 

  55. Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3.

    Article  PubMed  Google Scholar 

  56. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang T, Xu S, Liu L, Li S, Zhang H, Lu X, et al. Integrated analysis of differentially expressed genes and a ceRNA network to identify hub lncRNAs and potential drugs for multiple sclerosis. Am J Transl Res. 2022;14:772–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Rojas E, Lopez MC, Valverde M. Single cell gel electrophoresis assay: methodology and applications. J Chromatogr B Biomed Sci Appl. 1999;722:225–54.

    Article  PubMed  CAS  Google Scholar 

  59. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 2011;25:1320–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ding L, Luo Y, Tian T, Chen X, Yang Y, Bu M, et al. RNF4 controls the extent of replication fork reversal to preserve genome stability. Nucleic Acids Res. 2022;50:5672–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Wang laboratory for insightful discussions and technical assistance.

Funding

We thank the following for funding support: the National Key R&D Program of China (2022YFA1302800), the National Science Fund for Distinguished Young Scholars (82125031), and the National Natural Science Foundation of China (82230089).

Author information

Authors and Affiliations

Authors

Contributions

YGH was responsible for designing and performing the experiments. YGH contributed to writing the original draft. LXM and XYD was responsible for bioinformatics analysis. ZL was responsible for part of the construction of plasmids and COIP assay. XZZ, ZX, NC, and WWB provided feedback on the report. LSW was responsible for purchasing consumables and reagents. YGH, LXM, and WJD reviewed and edited the manuscript.

Corresponding authors

Correspondence to Weibin Wang, Xiaoman Li or Jiadong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Xiong, Y., Xu, Z. et al. MBD1 protects replication fork stability by recruiting PARP1 and controlling transcription-replication conflicts. Cancer Gene Ther 31, 94–107 (2024). https://doi.org/10.1038/s41417-023-00685-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00685-0

Search

Quick links