Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer

Abstract

Esophageal cancer (EC) is the tenth most common cancer worldwide and has high morbidity and mortality. Its main subtypes include esophageal squamous cell carcinoma and esophageal adenocarcinoma, which are usually diagnosed during their advanced stages. The biological defects and inability of preclinical models to summarize completely the etiology of multiple factors, the complexity of the tumor microenvironment, and the genetic heterogeneity of tumors severely limit the clinical treatment of EC. Patient-derived models of EC not only retain the tissue structure, cell morphology, and differentiation characteristics of the original tumor, they also retain tumor heterogeneity. Therefore, compared with other preclinical models, they can better predict the efficacy of candidate drugs, explore novel biomarkers, combine with clinical trials, and effectively improve patient prognosis. This review discusses the methods and animals used to establish patient-derived models and genetically engineered mouse models, especially patient-derived xenograft models. It also discusses their advantages, applications, and limitations as preclinical experimental research tools to provide an important reference for the precise personalized treatment of EC and improve the prognosis of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of the different models for the study of esophageal cancer.

Similar content being viewed by others

References

  1. Liu Z, Zhao Y, Kong P, Liu Y, Huang J, Xu E, et al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell. 2023;41:181–95.e9.

    Article  CAS  PubMed  Google Scholar 

  2. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020;69:1564–71.

    Article  PubMed  Google Scholar 

  3. Iriarte F, Su S, Petrov RV, Bakhos CT, Abbas AE. Surgical management of early esophageal cancer. Surg Clin North Am. 2021;101:427–41.

    Article  PubMed  Google Scholar 

  4. Lewis S, Lukovic J. Neoadjuvant therapy in esophageal cancer. Thorac Surg Clin. 2022;32:447–56.

    Article  PubMed  Google Scholar 

  5. Collins A, Miles GJ, Wood J, MacFarlane M, Pritchard C, Moss E. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol Oncol. 2020;156:251–9.

    Article  CAS  PubMed  Google Scholar 

  6. Van Nyen T, Moiola CP, Colas E, Annibali D, Amant F. Modeling endometrial cancer: past, present, and future. Int J Mol Sci. 2018;19:2348.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jung J, Seol HS, Chang S. The generation and application of patient-derived xenograft model for cancer research. Cancer Res Treat. 2018;50:1–10.

    Article  PubMed  Google Scholar 

  8. Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, et al. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol. 2022;13:1007579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giovanella BC, Fogh J. The nude mouse in cancer research. Adv Cancer Res. 1985;44:69–120.

    Article  CAS  PubMed  Google Scholar 

  10. Okada S, Vaeteewoottacharn K, Kariya R. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cells. 2019;8:889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 infection and pathogenesis: new insights from cellular and animal models. Int J Mol Sci. 2021;22:8001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu Y, et al. Delivery of CD47 blocker SIRPalpha-Fc by CAR-T cells enhances antitumor efficacy. J Immunother Cancer. 2022;10:e003737.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Belaid B, Lamara Mahammed L, Mohand Oussaid A, Migaud M, Khadri Y, Casanova JL, et al. Case report: interleukin-2 receptor common gamma chain defect presented as a hyper-IgE syndrome. Front Immunol. 2021;12:696350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McDermott SP, Eppert K, Lechman ER, Doedens M, Dick JE. Comparison of human cord blood engraftment between immunocompromised mouse strains. Blood. 2010;116:193–200.

    Article  CAS  PubMed  Google Scholar 

  15. Abdolahi S, Ghazvinian Z, Muhammadnejad S, Saleh M, Asadzadeh Aghdaei H, Baghaei K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J Transl Med. 2022;20:206.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shin HY, Lee EJ, Yang W, Kim HS, Chung D, Cho H, et al. Identification of prognostic markers of gynecologic cancers utilizing patient-derived xenograft mouse models. Cancers. 2022;14:829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Z, Ahn MH, Kurokawa T, Ly A, Zhang G, Wang F, et al. A fast, simple, and cost-effective method of expanding patient-derived xenograft mouse models of pancreatic ductal adenocarcinoma. J Transl Med. 2020;18:255.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int. 2022;22:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaeteewoottacharn K, Pairojkul C, Kariya R, Muisuk K, Imtawil K, Chamgramol Y, et al. Establishment of Highly transplantable cholangiocarcinoma cell lines from a patient-derived xenograft mouse model. Cells. 2019;8:496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collins AT, Lang SH. A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ. 2018;6:e5981.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tanaka T, Nishie R, Ueda S, Miyamoto S, Hashida S, Konishi H, et al. Patient-derived xenograft models in cervical cancer: a systematic review. Int J Mol Sci. 2021;22:9369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lan T, Xue X, Dunmall LC, Miao J, Wang Y. Patient-derived xenograft: a developing tool for screening biomarkers and potential therapeutic targets for human esophageal cancers. Aging. 2021;13:12273–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujii E, Kato A, Suzuki M. Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J Toxicol Pathol. 2020;33:153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujii E, Kato A, Chen YJ, Matsubara K, Ohnishi Y, Suzuki M. Characterization of EBV-related lymphoproliferative lesions arising in donor lymphocytes of transplanted human tumor tissues in the NOG mouse. Exp Anim. 2014;63:289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tse E, Kwong YL. Epstein Barr virus-associated lymphoproliferative diseases: the virus as a therapeutic target. Exp Mol Med. 2015;47:e136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nowalk A, Green M. Epstein-Barr virus. Microbiol Spectr. 2016;4. https://doi.org/10.1128/microbiolspec.

  27. Corso S, Cargnelutti M, Durando S, Menegon S, Apicella M, Migliore C, et al. Rituximab treatment prevents lymphoma onset in gastric cancer patient-derived xenografts. Neoplasia. 2018;20:443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fujii E, Kato A, Chen YJ, Matsubara K, Ohnishi Y, Suzuki M. The status of donor cancer tissues affects the fate of patient-derived colorectal cancer xenografts in NOG mice. Exp Anim. 2015;64:181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Veeranki OL, Tong Z, Mejia A, Verma A, Katkhuda R, Bassett R, et al. A novel patient-derived orthotopic xenograft model of esophageal adenocarcinoma provides a platform for translational discoveries. Dis Model Mech. 2019;12:dmm041004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Read M, Liu D, Duong CP, Cullinane C, Murray WK, Fennell CM, et al. Intramuscular transplantation improves engraftment rates for esophageal patient-derived tumor xenografts. Ann Surg Oncol. 2016;23:305–11.

    Article  PubMed  Google Scholar 

  31. Okada S, Vaeteewoottacharn K, Kariya R. Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine. Chem Pharm Bull. 2018;66:225–30.

    Article  CAS  Google Scholar 

  32. Cutz JC, Guan J, Bayani J, Yoshimoto M, Xue H, Sutcliffe M, et al. Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res. 2006;12:4043–54.

    Article  CAS  PubMed  Google Scholar 

  33. Huang P, Westmoreland SV, Jain RK, Fukumura D. Spontaneous nonthymic tumors in SCID mice. Comp Med. 2011;61:227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Santagostino SF, Arbona RJR, Nashat MA, White JR, Monette S. Pathology of aging in NOD scid gamma female mice. Vet Pathol. 2017;54:855–69.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van de Merbel AF, van der Horst G, van der Pluijm G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat Rev Urol. 2021;18:33–45.

    Article  PubMed  Google Scholar 

  36. Fujii E, Suzuki M, Matsubara K, Watanabe M, Chen YJ, Adachi K, et al. Establishment and characterization of in vivo human tumor models in the NOD/SCID/gamma(c)(null) mouse. Pathol Int. 2008;58:559–67.

    Article  PubMed  Google Scholar 

  37. Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11:933–59.

    Article  CAS  PubMed  Google Scholar 

  38. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, et al. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res. 2009;69:3364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, et al. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells. 2016;39:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma F, Laster K, Nie W, Liu F, Kim DJ, Lee MH, et al. Heterogeneity analysis of esophageal squamous cell carcinoma in cell lines, tumor tissues and patient-derived xenografts. J Cancer. 2021;12:3930–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sia D, Moeini A, Labgaa I, Villanueva A. The future of patient-derived tumor xenografts in cancer treatment. Pharmacogenomics. 2015;16:1671–83.

    Article  CAS  PubMed  Google Scholar 

  42. Kerbel RS. Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved. Cancer Biol Ther. 2003;2:S134–9.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao L, et al. Long noncoding RNA AGPG regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat Commun. 2020;11:1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai MF, Chen SM, Ong AZ, Chung YH, Chen PN, Hsieh YH, et al. Shikonin induced program cell death through generation of reactive oxygen species in renal cancer cells. Antioxidants. 2021;10:1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Q, Liu Q, Zheng S, Liu T, Yang L, Han X, et al. Shikonin inhibits tumor growth of ESCC by suppressing PKM2 mediated aerobic glycolysis and STAT3 phosphorylation. J Cancer. 2021;12:4830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pang M, Xie X, Zhang Y, Laster KV, Liu K, Kim DJ. Ethyl ferulate suppresses esophageal squamous cell carcinoma tumor growth through inhibiting the mTOR signaling pathway. Front Oncol. 2021;11:780011.

    Article  CAS  PubMed  Google Scholar 

  47. Yang N, Lu X, Jiang Y, Zhao L, Wang D, Wei Y, et al. Arbidol inhibits human esophageal squamous cell carcinoma growth in vitro and in vivo through suppressing ataxia telangiectasia and Rad3-related protein kinase. Elife. 2022;11:e73953.

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57:1229–54.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zou J, Li S, Chen Z, Lu Z, Gao J, Zou J, et al. A novel oral camptothecin analog, gimatecan, exhibits superior antitumor efficacy than irinotecan toward esophageal squamous cell carcinoma in vitro and in vivo. Cell Death Dis. 2018;9:661.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kobayashi T, Makino T, Yamashita K, Saito T, Tanaka K, Takahashi T, et al. APR-246 induces apoptosis and enhances chemo-sensitivity via activation of ROS and TAp73-Noxa signal in oesophageal squamous cell cancer with TP53 missense mutation. Br J Cancer. 2021;125:1523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moy RH, Walch HS, Mattar M, Chatila WK, Molena D, Strong VE, et al. Defining and targeting esophagogastric cancer genomic subsets with patient-derived xenografts. JCO Precis Oncol. 2022;6:e2100242.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Su D, Zhang D, Jin J, Ying L, Han M, Chen K, et al. Identification of predictors of drug sensitivity using patient-derived models of esophageal squamous cell carcinoma. Nat Commun. 2019;10:5076.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu W, Miao C, Zhang S, Liu Y, Niu X, Xi Y, et al. VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther. 2021;6:322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roy S, Whitehead TD, Li S, Ademuyiwa FO, Wahl RL, Dehdashti F, et al. Co-clinical FDG-PET radiomic signature in predicting response to neoadjuvant chemotherapy in triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2022;49:550–62.

    Article  CAS  PubMed  Google Scholar 

  55. Nardella C, Lunardi A, Patnaik A, Cantley LC, Pandolfi PP. The APL paradigm and the "co-clinical trial" project. Cancer Discov. 2011;1:108–16.

    Article  PubMed  Google Scholar 

  56. Coussy F, Lavigne M, de Koning L, Botty RE, Nemati F, Naguez A, et al. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics. 2020;10:1531–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zou J, Liu Y, Wang J, Liu Z, Lu Z, Chen Z, et al. Establishment and genomic characterizations of patient-derived esophageal squamous cell carcinoma xenograft models using biopsies for treatment optimization. J Transl Med. 2018;16:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Collins DC, Sundar R, Lim JSJ, Yap TA. Towards precision medicine in the clinic: from biomarker discovery to novel therapeutics. Trends Pharmacol Sci. 2017;38:25–40.

    Article  CAS  PubMed  Google Scholar 

  59. Bao Z, Li A, Lu X, Wang Z, Yu Y, Wu W, et al. Oxethazaine inhibits esophageal squamous cell carcinoma proliferation and metastasis by targeting aurora kinase A. Cell Death Dis. 2022;13:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV. Mouse tumor models for advanced cancer immunotherapy. Int J Mol Sci. 2020;21:4118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sereti E, Karagianellou T, Kotsoni I, Magouliotis D, Kamposioras K, Ulukaya E, et al. Patient Derived Xenografts (PDX) for personalized treatment of pancreatic cancer: emerging allies in the war on a devastating cancer? J Proteom. 2018;188:107–18.

    Article  CAS  Google Scholar 

  62. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu C, Wang X, Shang H, Wei H. Construction of a humanized PBMC-PDX model to study the efficacy of a bacterial marker in lung cancer immunotherapy. Dis Markers. 2022;2022:1479246.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Celik H, Krug E, Zhang CR, Han W, Issa N, Koh WK, et al. A humanized animal model predicts clonal evolution and therapeutic vulnerabilities in myeloproliferative neoplasms. Cancer Discov. 2021;11:3126–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Courtois J, Ritacco C, Dubois S, Canti L, Vandenhove B, Seidel L, et al. Itacitinib prevents xenogeneic GVHD in humanized mice. Bone Marrow Transpl. 2021;56:2672–81.

    Article  CAS  Google Scholar 

  66. Kemper K, Krijgsman O, Cornelissen-Steijger P, Shahrabi A, Weeber F, Song JY, et al. Intra- and inter-tumor heterogeneity in a vemurafenib-resistant melanoma patient and derived xenografts. EMBO Mol Med. 2015;7:1104–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wegner CS, Hauge A, Andersen LMK, Huang R, Simonsen TG, Gaustad JV, et al. Increasing aggressiveness of patient-derived xenograft models of cervix carcinoma during serial transplantation. Oncotarget. 2018;9:21036–51.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pearson AT, Finkel KA, Warner KA, Nor F, Tice D, Martins MD, et al. Patient-derived xenograft (PDX) tumors increase growth rate with time. Oncotarget. 2016;7:7993–8005.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet. 2017;49:1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shi J, Li Y, Jia R, Fan X. The fidelity of cancer cells in PDX models: characteristics, mechanism and clinical significance. Int J Cancer. 2020;146:2078–88.

    Article  CAS  PubMed  Google Scholar 

  71. Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Garcia PL, Miller AL, Yoon KJ. Patient-derived xenograft models of pancreatic cancer: overview and comparison with other types of models. Cancers. 2020;12:1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23:393–410.

    Article  CAS  PubMed  Google Scholar 

  74. Clinton J, McWilliams-Koeppen P. Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture. Curr Protoc Cell Biol. 2019;82:e66.

    Article  CAS  PubMed  Google Scholar 

  75. Li X, Francies HE, Secrier M, Perner J, Miremadi A, Galeano-Dalmau N, et al. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat Commun 2018;9:2983.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Karakasheva TA, Gabre JT, Sachdeva UM, Cruz-Acuna R, Lin EW, DeMarshall M, et al. Patient-derived organoids as a platform for modeling a patient’s response to chemoradiotherapy in esophageal cancer. Sci Rep. 2021;11:21304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF, Kaing S, et al. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep. 2020;31:107588.

    Article  CAS  PubMed  Google Scholar 

  78. Karakasheva TA, Kijima T, Shimonosono M, Maekawa H, Sahu V, Gabre JT, et al. Generation and characterization of patient-derived head and neck, oral, and esophageal cancer organoids. Curr Protoc Stem Cell Biol. 2020;53:e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sachdeva UM, Shimonosono M, Flashner S, Cruz-Acuna R, Gabre JT, Nakagawa H. Understanding the cellular origin and progression of esophageal cancer using esophageal organoids. Cancer Lett. 2021;509:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, et al. The esophageal organoid system reveals functional interplay between notch and cytokines in reactive epithelial changes. Cell Mol Gastroenterol Hepatol. 2018;5:333–52.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jeon MJ, Haugen BR. Preclinical models of follicular cell-derived thyroid cancer: an overview from cancer cell lines to mouse models. Endocrinol Metab. 2022;37:830–8.

    Article  Google Scholar 

  82. Tseng HC, Wu MR, Lee CH, Hsiao JK. Differentiation capacity of bone marrow-derived rat mesenchymal stem cells from DsRed and Cre transgenic Cre/loxP models. Cells. 2022;11:2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Le Magnen C, Dutta A, Abate-Shen C. Optimizing mouse models for precision cancer prevention. Nat Rev Cancer. 2016;16:187–96.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Day CP, Merlino G, Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015;163:39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 2006;66:3355–8. discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  86. Singh M, Murriel CL, Johnson L. Genetically engineered mouse models: closing the gap between preclinical data and trial outcomes. Cancer Res. 2012;72:2695–700.

    Article  CAS  PubMed  Google Scholar 

  87. Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res. 2021;406:112757.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Bailey D, Yang P, Kim E, Que J. The development and stem cells of the esophagus. Development. 2021;148:dev193839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Raad S, David A, Que J, Faure C. Genetic mouse models and induced pluripotent stem cells for studying tracheal-esophageal separation and esophageal development. Stem Cells Dev. 2020;29:953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tetreault MP. Esophageal cancer: insights from mouse models. Cancer Growth Metastasis. 2015;8:37–46.

    PubMed  PubMed Central  Google Scholar 

  91. Cai EY, Garcia J, Liu Y, Vakar-Lopez F, Arora S, Nguyen HM, et al. A bladder cancer patient-derived xenograft displays aggressive growth dynamics in vivo and in organoid culture. Sci Rep. 2021;11:4609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180:188–204.e22.

    Article  CAS  PubMed  Google Scholar 

  93. Wunderlich M, Manning N, Sexton C, Sabulski A, Byerly L, O’Brien E, et al. Improved chemotherapy modeling with RAG-based immune deficient mice. PLoS One. 2019;14:e0225532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xing H, Gao M, Wang Y, Zhang X, Shi J, Wang X, et al. Genome-wide gain-of-function screening identifies EZH2 mediating resistance to PI3Kalpha inhibitors in oesophageal squamous cell carcinoma. Clin Transl Med. 2022;12:e835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo XJ, He MM, Liu J, Zheng JB, Wu QN, Chen YX, et al. LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Exp Mol Med. 2022;54:834–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li S, Hoefnagel SJM, Read M, Meijer S, van Berge Henegouwen MI, Gisbertz SS, et al. Selective targeting BMP2 and 4 in SMAD4 negative esophageal adenocarcinoma inhibits tumor growth and aggressiveness in preclinical models. Cell Oncol. 2022;45:639–58.

    Article  CAS  Google Scholar 

  97. Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, et al. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett’s-associated esophageal adenocarcinomas. J Exp Clin Cancer Res. 2022;41:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Z, Wu K, Gu S, Wang W, Xie S, Lu T, et al. A methyltransferase-like 14/miR-99a-5p/tribble 2 positive feedback circuit promotes cancer stem cell persistence and radioresistance via histone deacetylase 2-mediated epigenetic modulation in esophageal squamous cell carcinoma. Clin Transl Med. 2021;11:e545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xuan Y, Sheng Y, Zhang D, Zhang K, Zhang Z, Ping Y, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models. Transl Oncol. 2021;14:101138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Munekage E, Serada S, Tsujii S, Yokota K, Kiuchi K, Tominaga K, et al. A glypican-1-targeted antibody-drug conjugate exhibits potent tumor growth inhibition in glypican-1-positive pancreatic cancer and esophageal squamous cell carcinoma. Neoplasia. 2021;23:939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li MY, Fan LN, Han DH, Yu Z, Ma J, Liu YX, et al. Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma. J Clin Invest. 2020;130:4301–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Teichman J, Dodbiba L, Thai H, Fleet A, Morey T, Liu L, et al. Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One. 2018;13:e0194809.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Steins A, Klaassen R, Jacobs I, Schabel MC, van Lier M, Ebbing EA, et al. Rapid stromal remodeling by short-term VEGFR2 inhibition increases chemotherapy delivery in esophagogastric adenocarcinoma. Mol Oncol. 2020;14:704–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jia X, Wang P, Huang C, Zhao D, Wu Q, Lu B, et al. Toosendanin targeting eEF2 impedes Topoisomerase I & II protein translation to suppress esophageal squamous cell carcinoma growth. J Exp Clin Cancer Res. 2023;42:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu Q, Liu F, Ge M, Laster KV, Wei L, Du R, et al. BRD4 drives esophageal squamous cell carcinoma growth by promoting RCC2 expression. Oncogene. 2022;41:347–60.

    Article  CAS  PubMed  Google Scholar 

  106. Liu J, Liu ZX, Li JJ, Zeng ZL, Wang JH, Luo XJ, et al. The macrophage-associated lncRNA MALR facilitates ILF3 liquid-liquid phase separation to promote HIF1alpha signaling in esophageal cancer. Cancer Res. 2022;83:1476–89.

    Article  Google Scholar 

  107. Liu F, Wu Q, Han W, Laster K, Hu Y, Ma F, et al. Targeting integrin alphavbeta3 with indomethacin inhibits patient-derived xenograft tumour growth and recurrence in oesophageal squamous cell carcinoma. Clin Transl Med. 2021;11:e548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu X, Wang Z, Jiang Y, Zhou H, Li A, Wei Y, et al. Tegaserod maleate inhibits esophageal squamous cell carcinoma proliferation by suppressing the peroxisome pathway. Front Oncol. 2021;11:683241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jia X, Huang C, Hu Y, Wu Q, Liu F, Nie W, et al. Cirsiliol targets tyrosine kinase 2 to inhibit esophageal squamous cell carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res. 2021;40:105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang Y, Shi X, Xie X, Laster KV, Pang M, Liu K, et al. Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR. Phytother Res 2021;35:6377–88.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao L, Zhang Y, Li A, Lu X, Li M, Yuan Q, et al. Azelnidipine inhibits esophageal squamous cell carcinoma proliferation in vivo and in vitro by targeting MEK1/2. Mol Ther Oncolytics. 2022;27:61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu X, Jiang Y, Zhou H, Zhao X, Li M, Bao Z, et al. Dasabuvir suppresses esophageal squamous cell carcinoma growth in vitro and in vivo through targeting ROCK1. Cell Death Dis. 2023;14:118.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Shi X, Zhang Y, Xie X, Pang M, Laster K, Li J, et al. Ipriflavone suppresses growth of esophageal squamous cell carcinoma through inhibiting mTOR in vitro and in vivo. Front Oncol. 2021;11:648809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang D, Zhang W, Zhang X, Li M, Wu Q, Li X, et al. Daurisoline suppresses esophageal squamous cell carcinoma growth in vitro and in vivo by targeting MEK1/2 kinase. Mol Carcinog 2023;62:517–31.

    Article  CAS  PubMed  Google Scholar 

  115. Zhou Y, He X, Jiang Y, Wang Z, Yu Y, Wu W, et al. Repurposed benzydamine targeting CDK2 suppresses the growth of esophageal squamous cell carcinoma. Front Med. 2022;290–303.

  116. Ma F, Liu F, Nie W, Laster K, Tian X, Lu B, et al. 3,3’-Diindolylmethane plus eflornithine suppress DNA replication and cell cycle in esophageal squamous cell carcinoma in vivo. J Cancer. 2022;13:2607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, et al. Three-dimensional organoids reveal therapy resistance of esophageal and oropharyngeal squamous cell carcinoma cells. Cell Mol Gastroenterol Hepatol. 2019;7:73–91.

    Article  PubMed  Google Scholar 

  118. Derouet MF, Allen J, Wilson GW, Ng C, Radulovich N, Kalimuthu S, et al. Towards personalized induction therapy for esophageal adenocarcinoma: organoids derived from endoscopic biopsy recapitulate the pre-treatment tumor. Sci Rep. 2020;10:14514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank EnPapers (www.enpapers.com/) for English language editing.

Funding

This study was supported by the General Program of Henan Natural Science Foundation (No. 232300421166), Key Scientific and Technological Projects of Henan Province (No. 212102310634) and Key Scientific and Technological Project of Xinxiang City (No. GG2021008).

Author information

Authors and Affiliations

Authors

Contributions

ZJH and LF drafted the manuscript and completed the figures and tables; XHY and ZBY collected the references; CHW revised the manuscript; ZJH provided funding support. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Junhe Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The Review Board of Xinxiang Medical University approved the study and all patients provided written informed consent prior to any study related activities.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Xu, H., Cheng, H. et al. Patient-derived tumor models: a suitable tool for preclinical studies on esophageal cancer. Cancer Gene Ther 30, 1443–1455 (2023). https://doi.org/10.1038/s41417-023-00652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00652-9

Search

Quick links