Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA N6-methyladenosine (m6A) modification in HNSCC: molecular mechanism and therapeutic potential

Abstract

Head and neck squamous cell carcinoma ranks seventh in incidence of malignant tumours in the world. Although there are treatments including surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy, drug resistance to treatment is caused by various reasons, and the survival rate of patients remains frustrating. To overcome the bottleneck of treatment at this stage, it is urgent to identify possible diagnostic and prognostic markers. N6-methyladenosine is a methylation modification on the sixth N atom of adenine which is the most abundant epitope transcriptome modification in mammalian genes. N6-methyladenosine modification is reversible and results from the interaction among writers, erasers and readers. A large number of studies have proven that N6-methyladenosine modification has important significance in promoting the progression and treatment of tumours and have made great progress in research. In this review, we introduce how N6-methyladenosine modification promotes the occurrence and development of tumours, the mechanism of drug resistance, and new findings of N6-methyladenosine modification in radiotherapy and chemotherapy, immunotherapy, and targeted therapy. N6-methyladenosine modification provides more possibilities for improving the overall survival rate and prognosis of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of m6A modification in HNSCC drug resistance (by Figdraw).

Similar content being viewed by others

Data availability

The studies included were retrieved from PubMed, Google scholar, Cochrane Library, Embase, Web of Science database.

References

  1. Hanemaaijer SH, Kok IC, Fehrmann RSN, van der Vegt B, Gietema JA, Plaat BEC, et al. Comparison of carboplatin with 5-fluorouracil vs. cisplatin as concomitant chemoradiotherapy for locally advanced head and neck squamous cell carcinoma. Front Oncol. 2020;10:761.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, et al. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 2022;41:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  4. Ye J, Wang Z, Chen X, Jiang X, Dong Z, Hu S, et al. YTHDF1-enhanced iron metabolism depends on TFRC m 6 A methylation. Theranostics 2020;10:12072–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gau M, Karabajakian A, Reverdy T, Neidhardt EM, Fayette J. Induction chemotherapy in head and neck cancers: results and controversies. Oral Oncol. 2019;95:164–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Li L, Ye Z, Zhang L, Yao N, Gai L. Identification of m6A methyltransferase-related genes predicts prognosis and immune infiltrates in head and neck squamous cell carcinoma. Ann Transl Med. 2021;9:1554–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang F, Liao Y, Zhang M, Zhu Y, Wang W, Cai H, et al. N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma. Oncogene 2021;40:3885–98.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, Xu F, Jian A, Yu H, Ye T, Hu W. m6A regulator-mediated methylation modification patterns and tumor microenvironment cell-infiltration characterization in head and neck cancer. Front Cell Dev Biol. 2022;9:803141.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu P. N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. 2021;12:298.

  10. Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer. 2022;21:52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen YC, Zeng WS, et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging 2020;12:11667–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding N, You A, Tian W, Gu L, Deng D. Chidamide increases the sensitivity of non-small cell lung cancer to crizotinib by decreasing c- MET mRNA methylation. Int J Biol Sci. 2020;16:2595–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malacrida A, Rivara M, Di Domizio A, Cislaghi G, Miloso M, Zuliani V, et al. 3D proteome-wide scale screening and activity evaluation of a new ALKBH5 inhibitor in U87 glioblastoma cell line. Bioorg Medicinal Chem. 2020;28:115300.

    Article  CAS  Google Scholar 

  14. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lan Q, Liu PY, Bell JL, Wang JY, Hüttelmaier S, Zhang XD, et al. The emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res. 2021;81:3431–40.

    Article  CAS  PubMed  Google Scholar 

  16. Quan C, Belaydi O, Hu J, Li H, Yu A, Liu P, et al. N6-methyladenosine in cancer immunotherapy: an undervalued therapeutic target. Front Immunol. 2021;12:697026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pai S, Yadav VK, Kuo KT, Pikatan NW, Lin CS, Chien MH, et al. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway. IJMS 2021;22:11492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13:117. Dec

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chen X, Liu Y, Sun D, Sun R, Wang X, Li M, et al. Long noncoding RNA lnc‐H2AFV‐1 promotes cell growth by regulating aberrant m6A RNA modification in head and neck squamous cell carcinoma. Cancer Sci. 2022;113:2071–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ai Y, Liu S, Luo H, Wu S, Wei H, Tang Z, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1. J Immunol Res. 2021;2021:1–15.

    Google Scholar 

  22. Wang X, Tian L, Li Y, Wang J, Yan B, Yang L, et al. RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent. J Exp Clin Cancer Res. 2021;40:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Yan B, Wang X, Li Q, Kan X, Wang J, et al. ALKBH5‐mediated m6A modification of lncRNA KCNQ1OT1 triggers the development of LSCC via upregulation of HOXA9. J Cell Mol Med. 2022;26:385–98.

    Article  CAS  PubMed  Google Scholar 

  24. Jin S, Li M, Chang H, Wang R, Zhang Z, Zhang J, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 2022;21:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Du M, Peng Y, Li Y, Sun W, Zhu H, Wu J, et al. MYC-activated RNA N6-methyladenosine reader IGF2BP3 promotes cell proliferation and metastasis in nasopharyngeal carcinoma. Cell Death Discov. 2022;8:53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng J, Zheng H, Liu F, Wu Q, Liu S. The m6A methyltransferase METTL3 affects autophagy and progression of nasopharyngeal carcinoma by regulating the stability of lncRNA ZFAS1. Infect Agent Cancer 2022;17:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang Z, Ming X, Huang S, Yang M, Zhou X, Fang J. Comprehensive analysis of m6A regulators characterized by the immune cell infiltration in head and neck squamous cell carcinoma to aid immunotherapy and chemotherapy. Front Oncol. 2021;11:764798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiang M, Liu W, Tian W, You A, Deng D. RNA N-6-methyladenosine enzymes and resistance of cancer cells to chemotherapy and radiotherapy. Epigenomics 2020;12:801–9.

    Article  CAS  PubMed  Google Scholar 

  29. Jing FY, Zhou LM, Ning YJ, Wang XJ, Zhu YM. The biological function, mechanism, and clinical significance of m6A RNA modifications in head and neck carcinoma: a systematic review. Front Cell Dev Biol. 2021;9:683254.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang F, Jin H, Que B, Chao Y, Zhang H, Ying X, et al. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019;38:4755–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S, Wu Q, Liu J, Zhong Y. Identification of Two m6A readers YTHDF1 and IGF2BP2 as immune biomarkers in head and neck squamous cell carcinoma. Front Genet. 2022;13:903634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Jiang X, Li X, Yan D, Liu J, Yang J, et al. The methylation modification of m6A regulators contributes to the prognosis of head and neck squamous cell carcinoma. Ann Transl Med. 2021;9:1346–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang Z, Zhao J, Xie W, Sun Q, Wang H, Qiao B. LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by sunppressing miR-184 expression. Cancer Med. 2017;6:2897–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Lu T, Zhong F, Lv Q, Fang M, Tu Z, et al. A signature of N6-methyladenosine regulator-related genes predicts prognoses and immune responses for head and neck squamous cell carcinoma. Front Immunol. 2022;13:809872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin H, Wang Y, Wang P, Long F, Wang T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol Cancer. 2022;21:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guan S, Wei J, Huang L, Wu L. Chemotherapy and chemo-resistance in nasopharyngeal carcinoma. Eur J Med Chem. 2020;207:112758.

    Article  CAS  PubMed  Google Scholar 

  37. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet. 2019;393:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. EGöttgens EL, Ostheimer C, Bussink J, Span PN, Hammod EM. HPV, hypoxia and radiation response in head and neck cancer. Br J Radiol. 2018;92:20180047.

  39. Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R, Wang YY, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting β-catenin through mRNA demethylation. Mol Carcinog. 2018;57:590–7.

    Article  CAS  PubMed  Google Scholar 

  40. Perri F, Pacelli R, Della Vittoria Scarpati G, Cella L, Giuliano M, Caponigro F, et al. Radioresistance in head and neck squamous cell carcinoma: biological bases and therapeutic implications: radioresistance in HNSCC. Head Neck. 2015;37:763–70.

    Article  PubMed  Google Scholar 

  41. Liu L, Wu Y, Li Q, Liang J, He Q, Zhao L, et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma. Mol Ther. 2020;28:2177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32170910), Natural Science Foundation of Jiangsu Province (BK20211124), Zhenjiang Key Research and Development Programme (SH2021037) and Medical Research of Health and Health Commission, Jiangsu Province (Z2020056).

Author information

Authors and Affiliations

Authors

Contributions

XYS, SQF and XY conceived the idea and wrote the manuscript. XP and RKW collated the data. XW and HQL (corresponding author) revised and edited the manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Hanqiang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Fu, S., Yuan, X. et al. RNA N6-methyladenosine (m6A) modification in HNSCC: molecular mechanism and therapeutic potential. Cancer Gene Ther 30, 1209–1214 (2023). https://doi.org/10.1038/s41417-023-00628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00628-9

Search

Quick links