Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RNA N6-methyladenosine modifications in urological cancers: from mechanism to application

Abstract

The N6‐methyladenosine (m6A) modification is the most common modification of messenger RNAs in eukaryotes and has crucial roles in multiple cancers, including in urological malignancies such as renal cell carcinoma, bladder cancer and prostate cancer. The m6A RNA modification is controlled by three types of regulators, including methyltransferases (writers), demethylases (erasers) and RNA‐binding proteins (readers), which are responsible for gene regulation at the post-transcriptional level. This Review summarizes the current evidence indicating that aberrant or dysregulated m6A modification is associated with urological cancer development, progression and prognosis. The complex and context-dependent effects of dysregulated m6A modifications in urological cancers are described, along with the potential for aberrantly expressed m6A regulators to provide valuable diagnostic and prognostic biomarkers as well as new therapeutic targets.

Key points

  • RNA m6A (N6 methyladenosine) modifications contribute to the occurrence and progression of urological cancers, including renal cell carcinoma, bladder cancer and prostate cancer.

  • Aberrant m6A modification promotes malignant transformation and drives proliferation, apoptosis, migration, invasion and metastasis of urological cancers via changes in autophagy, glycolysis, mitochondrial metabolism, stemness remodelling and the tumour microenvironment.

  • RNA m6A modifications have complex and heterogeneous roles in urological cancers; some m6A regulators have both tumour-suppressing and tumour-promoting effects on cancer progression.

  • Various m6A modifiers involved in writing, reading and erasing of m6A modifications participate in intricate and dynamic signalling networks associated with urological cancer cell proliferation, differentiation, invasion and treatment resistance.

  • Preclinical studies have demonstrated potential benefits of targeting m6A modifiers in urological malignancies, but no phase II clinical trials have been conducted so far.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of RNA m6A modification.
Fig. 2: M6A modifications in renal cell carcinoma.
Fig. 3: M6A modifications in bladder cancer.
Fig. 4: M6A modifications in prostate cancer.
Fig. 5: Clinical applications of m6A regulators in urological cancers.

Similar content being viewed by others

References

  1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  PubMed  Google Scholar 

  2. Mariotto, A. B., Yabroff, K. R., Shao, Y., Feuer, E. J. & Brown, M. L. Projections of the cost of cancer care in the United States: 2010–2020. J. Natl Cancer Inst. 103, 117–128 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, X. et al. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget 8, 96103–96116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen, M. et al. m6A RNA methylation regulators can contribute to malignant progression and impact the prognosis of bladder cancer. Biosci. Rep. 39, BSR20192892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, Q. et al. Molecular characterization and clinical relevance of N6-methyladenosine regulators in metastatic prostate cancer. Front. Oncol. 12, 914692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin, H., Wang, Y., Wang, P., Long, F. & Wang, T. Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: impacts on therapeutic resistance. Mol. Cancer 21, 148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shen, S. et al. Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types. Mol. Cancer 20, 67 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. An, Y. & Duan, H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 21, 14 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, Z. et al. Biological and pharmacological roles of m6A modifications in cancer drug resistance. Mol. Cancer 21, 220 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deng, L. J. et al. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol. Cancer 21, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes. Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, H. et al. Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res. 48, 6251–6264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, L. et al. Insights into N6-methyladenosine and programmed cell death in cancer. Mol. Cancer 21, 32 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He, L. et al. Functions of N6-methyladenosine and its role in cancer. Mol. Cancer 18, 176 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Qin, Y. et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int. J. Mol. Med. 46, 1958–1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, J., Chen, L. & Qiang, P. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int. 21, 99 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shulman, Z. & Stern-Ginossar, N. The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat. Immunol. 21, 501–512 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Dai, D., Wang, H., Zhu, L., Jin, H. & Wang, X. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9, 124 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang, J. & Yin, P. Structural insights into N6-methyladenosine (m6A) modification in the transcriptome. Genomics Proteom. Bioinforma. 16, 85–98 (2018).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Structural basis of N6-adenosine methylation by the METTL3–METTL14 complex. Nature 534, 575–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell. Res. 24, 177–189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yue, Y. et al. VIRMA mediates preferential m6A mRNA methylation in 3′UTR and near stop codon and associates with alternative polyadenylation. Cell. Discov. 4, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Knuckles, P. et al. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m6A machinery component Wtap/Fl(2)d. Genes. Dev. 32, 415–429 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wen, J. et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038 e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, H. et al. N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol. 15, 88–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Goh, Y. T., Koh, C. W. Q., Sim, D. Y., Roca, X. & Goh, W. S. S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48, 9250–9261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Tran, N. et al. The human 18 S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 47, 7719–7733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nance, D. J. et al. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS ONE 15, e0227647 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mauer, J. et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature 541, 371–375 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, T., Kong, S., Tao, M. & Ju, S. The potential role of RNA N6-methyladenosine in cancer progression. Mol. Cancer 19, 88 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, W., Hao, Y., Zhang, X., Xu, S. & Pang, D. Targeting RNA N6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol. Cancer 21, 176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, J. et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71, 973–985 e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu, Y. et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).

    Article  PubMed  Google Scholar 

  37. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Ueda, Y. et al. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 7, 42271 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ueda, Y. et al. A real-time PCR-based quantitative assay for 3-methylcytosine demethylase activity of ALKBH3. Biochem. Biophys. Rep. 5, 476–481 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Esteve-Puig, R. et al. Epigenetic loss of m1A RNA demethylase ALKBH3 in Hodgkin lymphoma targets collagen, conferring poor clinical outcome. Blood 137, 994–999 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kasowitz, S. D. et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 14, e1007412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wojtas, M. N. et al. Regulation of m6A transcripts by the 3′ → 5′ RNA helicase YTHDC2 is essential for a successful meiotic program in the mammalian germline. Mol. Cell 68, 374–387.e12 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Saito, Y. et al. YTHDC2 control of gametogenesis requires helicase activity but not m6A binding. Genes. Dev. 36, 180–194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, Z. et al. The YTH domain is a novel RNA binding domain. J. Biol. Chem. 285, 14701–14710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi, H. et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu, B. et al. Molecular basis for the specific and multivariant recognitions of RNA substrates by human hnRNP A2/B1. Nat. Commun. 9, 420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chao, J. A. et al. ZBP1 recognition of β-actin zipcode induces RNA looping. Genes. Dev. 24, 148–158 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bell, J. L. et al. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol. Life Sci. 70, 2657–2675 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Y., Shi, Y. & Shen, H. & Xie, W.m6A-binding proteins: the emerging crucial performers in epigenetics. J. Hematol. Oncol. 13, 35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alarcón, C. R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Linehan, W. M. & Ricketts, C. J. The Cancer Genome Atlas of renal cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16, 539–552 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Bi, K. et al. Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma. Cancer Cell 39, 649–661.e5 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi, Y. et al. The RNA N6-methyladenosine methyltransferase METTL3 promotes the progression of kidney cancer via N6-methyladenosine-dependent translational enhancement of ABCD1. Front. Cell Dev. Biol. 9, 737498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Baarine, M., Beeson, C., Singh, A. & Singh, I. ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J. Neurochem. 133, 380–396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, D. et al. The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. J. Transl. Med. 20, 298 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, L. et al. Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients. Cancer Cell Int. 19, 101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Qi, F. et al. BTG2 suppresses renal cell carcinoma progression through N6-methyladenosine. Front. Oncol. 12, 1049928 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Q. et al. Identification of METTL14 in kidney renal clear cell carcinoma using bioinformatics analysis. Dis. Markers 2019, 5648783 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, L., Luo, X. & Qiao, S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br. J. Cancer 127, 30–42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, T. et al. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1. Cancer Sci. 113, 446–458 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Shen, D. et al. METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Mol. Ther. Nucleic Acids 27, 547–561 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, Z., Sun, T., Piao, C., Zhang, Z. & Kong, C. METTL14-mediated N6-methyladenosine modification of ITGB4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun. Signal. 20, 36 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ying, Y. et al. EGR2-mediated regulation of m6A reader IGF2BP proteins drive RCC tumorigenesis and metastasis via enhancing S1PR3 mRNA stabilization. Cell Death Dis. 12, 750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huo, F. C., Xie, M., Zhu, Z. M., Zheng, J. N. & Pei, D. S. SHMT2 promotes the tumorigenesis of renal cell carcinoma by regulating the m6A modification of PPAT. Genomics 114, 110424 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Jiang, Z. et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol. 7, 556–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Pei, X. et al. Enhanced IMP3 expression activates NF-кB pathway and promotes renal cell carcinoma progression. PLoS ONE 10, e0124338 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gu, Y. et al. DMDRMR-mediated regulation of m6A-modified CDK4 by m6A reader IGF2BP3 drives ccRCC progression. Cancer Res. 81, 923–934 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Li, A. et al. ZNF677 suppresses renal cell carcinoma progression through N6-methyladenosine and transcriptional repression of CDKN3. Clin. Transl. Med. 12, e906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu, Y. et al. FTO-mediated autophagy promotes progression of clear cell renal cell carcinoma via regulating SIK2 mRNA stability. Int. J. Biol. Sci. 18, 5943–5962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhuang, C. et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J. Cell Mol. Med. 23, 2163–2173 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zeng, X. et al. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free. Radic. Biol. Med. 184, 135–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, X. et al. ALKBH5 promotes the proliferation of renal cell carcinoma by regulating AURKB expression in an m6A-dependent manner. Ann. Transl. Med. 8, 646 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang, L. et al. CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3. Mol. Cancer 21, 23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Y., Su, R., Deng, X., Chen, Y. & Chen, J. FTO in cancer: functions, molecular mechanisms, and therapeutic implications. Trends Cancer 8, 598–614 (2022).

    Article  PubMed  Google Scholar 

  77. Panneerdoss, S. et al. Cross-talk among writers, readers, and erasers of m6A regulates cancer growth and progression. Sci. Adv. 4, eaar8263 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Saginala, K. et al. Epidemiology of bladder cancer. Med. Sci. 8, 15 (2020).

    CAS  Google Scholar 

  79. Griffiths, T. R., Action on Bladder Cancer. Current perspectives in bladder cancer management. Int. J. Clin. Pract. 67, 435–448 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Powles, T. & Morrison, L. Biomarker challenges for immune checkpoint inhibitors in urothelial carcinoma. Nat. Rev. Urol. 15, 585–587 (2018).

    Article  PubMed  Google Scholar 

  81. Crabb, S. J. & Douglas, J. The latest treatment options for bladder cancer. Br. Med. Bull. 128, 85–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, F. et al. Dynamic m6A mRNA methylation reveals the role of METTL3-m6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 38, 4755–4772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ying, X. et al. Targeted m6A demethylation of ITGA6 mRNA by a multisite dCasRx-m6A editor inhibits bladder cancer development. J. Adv. Res https://doi.org/10.1016/j.jare.2023.03.010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cheng, M. et al. The m6A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 38, 3667–3680 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Xie, H. et al. METTL3/YTHDF2 m6A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J. Cell Mol. Med. 24, 4092–4104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gao, Q. et al. The m6A methylation-regulated AFF4 promotes self-renewal of bladder cancer stem cells. Stem Cell Int. 2020, 8849218 (2020).

    Google Scholar 

  87. Wang, G. et al. Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front. Cell Dev. Biol. 9, 627706 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ni, Z. et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 82, 1789–1802 (2022).

    Article  CAS  PubMed  Google Scholar 

  89. Azzam, S. K., Alsafar, H. & Sajini, A. A. FTO m6A demethylase in obesity and cancer: implications and underlying molecular mechanisms. Int. J. Mol. Sci. 23, 3800 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deng, H. et al. Identification and validation of N6-methyladenosine-related biomarkers for bladder cancer: implications for immunotherapy. Front. Oncol. 12, 820242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tao, L. et al. FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin. Transl. Med. 11, e310 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Song, W., Yang, K., Luo, J., Gao, Z. & Gao, Y. Dysregulation of USP18/FTO/PYCR1 signaling network promotes bladder cancer development and progression. Aging 13, 3909–3925 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yi, W. et al. The tumor-suppressive effects of α-ketoglutarate-dependent dioxygenase FTO via N6-methyladenosine RNA methylation on bladder cancer patients. Bioengineered 12, 5323–5333 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, P. et al. m6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics 12, 6291–6307 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guimaraes-Teixeira, C. et al. Downregulation of m6A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol. Oncol. 16, 1841–1856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huang, J., Zhou, W., Hao, C., He, Q. & Tu, X. The feedback loop of METTL14 and USP38 regulates cell migration, invasion and EMT as well as metastasis in bladder cancer. PLoS Genet. 18, e1010366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gu, C. et al. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Mol. Cancer 18, 168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, K. et al. m6A writer WTAP targets NRF2 to accelerate bladder cancer malignancy via m6A-dependent ferroptosis regulation. Apoptosis 28, 627–638 (2023).

    Article  PubMed  Google Scholar 

  99. Barros-Silva, D. et al. VIRMA-dependent N6-methyladenosine modifications regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate cancer. Cancers 12, 771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  101. Cai, J. et al. RNA m6A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther. 12, 9143–9152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ma, X. X., Cao, Z. G. & Zhao, S. L. m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur. Rev. Med. Pharmacol. Sci. 24, 3565–3571 (2020).

    PubMed  Google Scholar 

  103. Chen, Y. et al. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics 11, 7640–7657 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li, J. et al. YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol. Cancer 19, 152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang, D. et al. METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia 54, 1581–1591 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Liu, J., Yuan, J. F. & Wang, Y. Z. METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis. Exp. Cell Res. 416, 113149 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Mao, Y. et al. METTL3-mediated m6A modification of lncRNA MALAT1 facilitates prostate cancer growth by activation of PI3K/AKT signaling. Cell Transpl. 31, 9636897221122997 (2022).

    Article  Google Scholar 

  108. Chen, B. et al. N6-methyladenosine-induced long non-coding RNA PVT1 regulates the miR-27b-3p/BLM axis to promote prostate cancer progression. Int. J. Oncol. 62, 16 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, S. et al. RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14, 91 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhu, K., Li, Y. & Xu, Y. The FTO m6A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m6A levels. Life Sci. 271, 119180 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Li, S. & Cao, L. Demethyltransferase FTO α-ketoglutarate dependent dioxygenase (FTO) regulates the proliferation, migration, invasion and tumor growth of prostate cancer by modulating the expression of melanocortin 4 receptor (MC4R). Bioengineered 13, 5598–5612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. da Cunha, P. A. et al. Interaction between obesity-related genes, FTO and MC4R, associated to an increase of breast cancer risk. Mol. Biol. Rep. 40, 6657–6664 (2013).

    Article  PubMed  Google Scholar 

  113. Liu, Y. Z. et al. Correlations of MC4R and MSH2 expression with obesity in colon cancer patients. Eur. Rev. Med. Pharmacol. Sci. 21, 2108–2113 (2017).

    PubMed  Google Scholar 

  114. Lurie, G. et al. The obesity-associated polymorphisms FTO rs9939609 and MC4R rs17782313 and endometrial cancer risk in non-Hispanic white women. PLoS ONE 6, e16756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zou, L. et al. N6-methyladenosine demethylase FTO suppressed prostate cancer progression by maintaining CLIC4 mRNA stability. Cell Death Discov. 8, 184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Suh, K. S. et al. Reciprocal modifications of CLIC4 in tumor epithelium and stroma mark malignant progression of multiple human cancers. Clin. Cancer Res. 13, 121–131 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Fernández-Salas, E. et al. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 22, 3610–3620 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Shiio, Y. et al. Quantitative proteomic analysis of Myc-induced apoptosis: a direct role for Myc induction of the mitochondrial chloride ion channel, mtCLIC/CLIC4. J. Biol. Chem. 281, 2750–2756 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Li, P. et al. ELK1-mediated YTHDF1 drives prostate cancer progression by facilitating the translation of Polo-like kinase 1 in an m6A dependent manner. Int. J. Biol. Sci. 18, 6145–6162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yuan, S. et al. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m6A reader YTHDC1. Cell Death Dis. 14, 7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song, J. et al. Overexpression of YTHDC2 contributes to the progression of prostate cancer and predicts poor outcomes in patients with prostate cancer. J. Biochem. Mol. Toxicol. 37, e23308 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Lothion-Roy, J. et al. Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer. Front. Genet. 13, 1096071 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Haigh, D. B. et al. The METTL3 RNA methyltransferase regulates transcriptional networks in prostate cancer. Cancers 14, 5148 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Qu, J. et al. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J. Hematol. Oncol. 15, 8 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, N. et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc. Natl Acad. Sci. USA 117, 20159–20170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Baptista, B., Riscado, M., Queiroz, J. A., Pichon, C. & Sousa, F. Non-coding RNAs: emerging from the discovery to therapeutic applications. Biochem. Pharmacol. 189, 114469 (2021).

    Article  CAS  PubMed  Google Scholar 

  127. Slack, F. J. & Chinnaiyan, A. M. The role of non-coding RNAs in oncology. Cell 179, 1033–1055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Qin, S., Mao, Y., Wang, H., Duan, Y. & Zhao, L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int. J. Biol. Sci. 17, 2718–2736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yang, W., Xie, L., Wang, P. & Zhuang, C. MiR-155 regulates m6A level and cell progression by targeting FTO in clear cell renal cell carcinoma. Cell Signal. 91, 110217 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. He, L. et al. MicroRNA-501-3p inhibits the proliferation of kidney cancer cells by targeting WTAP. Cancer Med. 10, 7222–7232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yang, L. et al. Low expression of TRAF3IP2-AS1 promotes progression of NONO-TFE3 translocation renal cell carcinoma by stimulating N6-methyladenosine of PARP1 mRNA and downregulating PTEN. J. Hematol. Oncol. 14, 46 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yang, W. et al. Downregulation of lncRNA ZNF582-AS1 due to DNA hypermethylation promotes clear cell renal cell carcinoma growth and metastasis by regulating the N6-methyladenosine modification of MT-RNR1. J. Exp. Clin. Cancer Res. 40, 92 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sun, J. et al. SMAD3 and FTO are involved in miR-5581-3p-mediated inhibition of cell migration and proliferation in bladder cancer. Cell Death Discov. 8, 199 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xie, F. et al. CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol. Cancer 20, 68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Li, J. et al. Downregulation of N6-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N6-methyladenosine levels. Oncotarget 9, 3752–3764 (2018).

    Article  PubMed  Google Scholar 

  136. Li, X., Liu, B., Wang, S., Li, J. & Ge, X. MiR-141-3p promotes malignant progression in prostate cancer through AlkB homolog 5-mediated m6A modification of protein arginine methyltransferase 6. Chin. J. Physiol. 66, 43–51 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, J. et al. Gene signatures and prognostic values of m6A regulators in clear cell renal cell carcinoma — a retrospective study using TCGA database. Aging 11, 1633–1647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, Y. et al. Decreased expression of METTL14 predicts poor prognosis and construction of a prognostic signature for clear cell renal cell carcinoma. Cancer Cell Int. 21, 46 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li, J. et al. The analysis of N6-methyladenosine regulators impacting the immune infiltration in clear cell renal cell carcinoma. Med. Oncol. 39, 41 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, Q. J. et al. m6A RNA methylation regulators correlate with malignant progression and have potential predictive values in clear cell renal cell carcinoma. Exp. Cell Res. 392, 112015 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Wei, J. et al. Establishment of a risk signature based on m6A RNA methylation regulators that predicts poor prognosis in renal cell carcinoma. Onco Targets Ther. 14, 413–426 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Fang, J., Hu, M., Sun, Y., Zhou, S. & Li, H. Expression profile analysis of m6A RNA methylation regulators indicates they are immune signature associated and can predict survival in kidney renal cell carcinoma. DNA Cell Biol. 39, 1–18 (2020).

    Article  Google Scholar 

  143. Guo, T. et al. N6-methyladenosine writer gene ZC3H13 predicts immune phenotype and therapeutic opportunities in kidney renal clear cell carcinoma. Front. Oncol. 11, 718644 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Strick, A. et al. The N6-methyladenosine (m6A) erasers alkylation repair homologue 5 (ALKBH5) and fat mass and obesity-associated protein (FTO) are prognostic biomarkers in patients with clear cell renal carcinoma. BJU Int. 125, 617–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  145. Guimaraes-Teixeira, C. et al. Deregulation of N6-methyladenosine RNA modification and its erasers FTO/ALKBH5 among the main renal cell tumor subtypes. J. Pers. Med. 11, 996 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. von Hagen, F. et al. N6-methyladenosine (m6A) readers are dysregulated in renal cell carcinoma. Mol. Carcinog. 60, 354–362 (2021).

    Article  Google Scholar 

  147. Huang, Z., Kang, W. & Zhang, Q. N6-methyladenosine methylation related immune biomarkers correlates with clinicopathological characteristics and prognosis in clear cell renal cell carcinoma. Transl. Cancer Res. 11, 1576–1586 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chen, L. et al. m6A RNA methylation regulators impact prognosis and tumor microenvironment in renal papillary cell carcinoma. Front. Oncol. 11, 598017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, Y. et al. Systematic analyses of the role of prognostic and immunological EIF3A, a reader protein, in clear cell renal cell carcinoma. Cancer Cell Int. 21, 680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Su, G. et al. YTHDF2 is a potential biomarker and associated with immune infiltration in kidney renal clear cell carcinoma. Front. Pharmacol. 12, 709548 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, J. et al. Constructing and validating of m6A-related genes prognostic signature for stomach adenocarcinoma and immune infiltration: potential biomarkers for predicting the overall survival. Front. Oncol. 12, 1050288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, K. et al. Prognostic roles of N6-methyladenosine METTL3 in different cancers: a system review and meta-analysis. Cancer Control. 28, 1073274821997455 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Wang, X. et al. Copy number variation analysis of m6A regulators identified METTL3 as a prognostic and immune-related biomarker in bladder cancer. Cancer Med. 10, 7804–7815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, J. et al. Bioinformatics analysis of the correlation between m6A RNA methylation regulators and the immune infiltration and prognosis of bladder cancer. Ann. Transl. Med. 10, 1386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cui, J. et al. Comprehensive analysis of N6-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell Int. 22, 72 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, J. et al. PGM1 and ENO1 promote the malignant progression of bladder cancer via comprehensive analysis of the m6A signature and tumor immune infiltration. J. Oncol. 2022, 8581805 (2022).

    PubMed  PubMed Central  Google Scholar 

  157. Liu, J. et al. Comprehensive analysis of N6-methyladenosine modification patterns associated with multiomic characteristics of bladder cancer. Front. Med. 8, 757432 (2021).

    Article  Google Scholar 

  158. Lu, M. et al. N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. EPMA J. 12, 589–604 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ma, T. et al. An effective N6-methyladenosine-related long non-coding RNA prognostic signature for predicting the prognosis of patients with bladder cancer. BMC Cancer 21, 1256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xue, M. Q. et al. Comprehensive analysis of the PD-L1 and immune infiltrates of N6-methyladenosine related long non-coding RNAs in bladder cancer. Sci. Rep. 12, 10082 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Huang, Z. et al. N6-methyladenosine-related lncRNAs in combination with computational histopathology and radiomics predict the prognosis of bladder cancer. Transl. Oncol. 27, 101581 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Feng, Z. H. et al. m6A-immune-related lncRNA prognostic signature for predicting immune landscape and prognosis of bladder cancer. J. Transl. Med. 20, 492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Huang, X., Wang, H. F. & Huang, S. Integrated risk scores from N6-methyladenosine-related lncRNAs are potential biomarkers for predicting the overall survival of bladder cancer patients. Front. Genet. 13, 906880 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang, Y. et al. N6-methylandenosine-related lncRNAs predict prognosis and immunotherapy response in bladder cancer. Front. Oncol. 11, 710767 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Liang, Y., Zhang, X., Ma, C. & Hu, J. m6A methylation regulators are predictive biomarkers for tumour metastasis in prostate cancer. Cancers 14, 4035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xu, J. et al. The identification of critical m6A RNA methylation regulators as malignant prognosis factors in prostate adenocarcinoma. Front. Genet. 11, 602485 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wu, Q. et al. N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer. J. Cancer 12, 682–692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liu, Y. et al. Construction of a comprehensive diagnostic scoring model for prostate cancer based on a novel six-gene panel. Front. Genet. 13, 831162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wang, J. et al. The m6A methylation regulator-based signature for predicting the prognosis of prostate cancer. Future Oncol. 16, 2421–2432 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Quan, Y., Zhang, X. & Ping, H. Construction of a risk prediction model using m6A RNA methylation regulators in prostate cancer: comprehensive bioinformatic analysis and histological validation. Cancer Cell Int. 22, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Su, H., Wang, Y. & Li, H. RNA m6A methylation regulators multi-omics analysis in prostate cancer. Front. Genet. 12, 768041 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu, J. et al. Construction and validation of N6-methyladenosine long non-coding RNAs signature of prognostic value for early biochemical recurrence of prostate cancer. J. Cancer Res. Clin. Oncol. 149, 1969–1983 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Zhao, Y., Sun, H., Zheng, J. & Shao, C. Analysis of RNA m6A methylation regulators and tumour immune cell infiltration characterization in prostate cancer. Artif. Cell Nanomed. Biotechnol. 49, 407–435 (2021).

    Article  CAS  Google Scholar 

  174. Ji, G. et al. Comprehensive analysis of m6A regulators prognostic value in prostate cancer. Aging 12, 14863–14884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sun, Z., Jing, C., Xiao, C., Li, T. & Wang, Y. Prognostic risk signature based on the expression of three m6A RNA methylation regulatory genes in kidney renal papillary cell carcinoma. Aging 12, 22078–22094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zheng, Z. et al. N6-methyladenosine RNA methylation regulators participate in malignant progression and have prognostic value in clear cell renal cell carcinoma. Oncol. Rep. 43, 1591–1605 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Cao, C. et al. Targeted demethylation of the PLOD2 mRNA inhibits the proliferation and migration of renal cell carcinoma. Front. Mol. Biosci. 8, 675683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen, J. et al. Targeted methylation of the lncRNA NEAT1 suppresses malignancy of renal cell carcinoma. Front. Cell Dev. Biol. 9, 777349 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ying, X. et al. Programmable N6-methyladenosine modification of CDCP1 mRNA by RCas9-methyltransferase like 3 conjugates promotes bladder cancer development. Mol. Cancer 19, 169 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dolbois, A. et al. 1,4,9-Triazaspiro[5.5]undecan-2-one derivatives as potent and selective METTL3 inhibitors. J. Med. Chem. 64, 12738–12760 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Su, R. et al. R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105.e23 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Huang, Y. et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell 35, 677–691.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, J. N. et al. Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci. Transl. Med. 14, eabk2709 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Josefin, H. Phase 1 study to evaluate the safety, PK, PD, and clinical activity of STC-15, a METTL-3 inhibitor, in subjects with advanced malignancies. ClinicalTrials.gov, NCT05584111 (2023).

  186. Chen, Y. et al. N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol. Cancer 21, 111 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Pan, Y. et al. Extracellular vesicle-mediated transfer of lncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma. Cancer Res. 83, 103–116 (2023).

    Article  CAS  PubMed  Google Scholar 

  188. Cotter, K. A. et al. Mapping of m6A and its regulatory targets in prostate cancer reveals a METTL3-low induction of therapy resistance. Mol. Cancer Res. 19, 1398–1411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Wei, W. et al. Circ0008399 interaction with WTAP promotes assembly and activity of the m6A methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 81, 6142–6156 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Yu, H. et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Mol. Ther. Nucleic Acids 23, 27–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Pei, D. et al. Application of m6A and TME in predicting the prognosis and treatment of clear cell renal cell carcinoma. J. Oncol. 2022, 2910491 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Xu, W. et al. m6A regulator-mediated methylation modification model predicts prognosis, tumor microenvironment characterizations and response to immunotherapies of clear cell renal cell carcinoma. Front. Oncol. 11, 709579 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Su, R. et al. Targeting FTO suppresses cancer stem cell maintenance and immune evasion. Cancer Cell 38, 79–96.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Q.Z.’s research is supported by funding grants from the National Natural Science Foundation of China (82273151 and 82072826).

Author information

Authors and Affiliations

Authors

Contributions

Q.Z. provided direction and guidance throughout the preparation of this Review. L.Y. wrote and edited the manuscript. J.Y. and Q.T. reviewed and edited the manuscript. All authors read and approved the final draft.

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Carmen Jeronimo, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ying, J., Tao, Q. et al. RNA N6-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol (2024). https://doi.org/10.1038/s41585-023-00851-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41585-023-00851-x

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer