Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

METTL3 promotes the malignancy of non-small cell lung cancer by N6-methyladenosine modifying SFRP2

Abstract

This study aimed to investigate the roles of METTL3, a regulator of m6A, in NSCLC. RT-qPCR was applied to determine mRNA of m6A-associated genes and SFRP2, and western blot were used for ZEB1 and MMP9 protein expression. Total m6A level was measured using methylated RNA immunoprecipitation (MeRIP) assay, and RIP was used to access m6A level of SFRP2. Cellular behaviors were detected using CCK-8 and tranwell assays. Xenograft assays were conducted to further verify the roles of METTL3 and SFRP2 in NSCLC. The expression level of METTL3 was higher in NSCLC than normal controls. However, downregulation of METTL3 restrained the proliferation, migration and invasion of NSCLC cells. Enhanced expression of METTL3 caused the inverse consequences. Moreover, SFRP2 was found to be negatively regulated by METTL3. Intriguingly, the anti-tumor functions of METTL3 knockdown in the phenotype of NSCLC cells and xenograft mice were overturned by inhibition of SFRP2. Silencing METTL3 resulted in the enhanced stability of SFRP2. Finally, downregulation of SFRP2 induced by METTL3 activated the Wnt/β-catenin signaling pathway in NSCLC. METTL3 acted as an oncogene in the pathogenesis of NSCLC via suppressing SFRP2 to activate Wnt/β-catenin signaling pathway, indicating that METTL3 might be a promising predictor in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Highly expressed METTL3 is connected with diagnosis and poor prognosis in NSCLC.
Fig. 2: Knockdown of METTL3 alleviated the malignant traits of NSCLC cells.
Fig. 3: SFRP2 is a gene related to lung cancer which is negatively related with METTL3.
Fig. 4: METTL3 can modify SFRP2 by m6A methylation to weaken the stability of SFRP2.
Fig. 5: Suppression of SFRP2 abolished the potency of METTL3 knockdown in NSCLC cell proliferation, migration and invasion.
Fig. 6: Silencing SFRP2 abolished the potency of METTL3 knockdown in tumor growth of NSCLC in vivo.
Fig. 7: SFRP2 participates in the Wnt/β-catenin signaling pathway in NSCLC.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71:209–49.

    Google Scholar 

  2. Zang X, Gu J, Zhang J, Shi H, Hou S, Xu X, et al. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis. 2020;11:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reck MPD, Heigener DFM, Mok TP, Soria JP, Rabe KFP. Management of non-small-cell lung cancer: recent developments. Lancet (Br Ed). 2013;382:709–19.

    Article  CAS  Google Scholar 

  4. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61:91–112.

    Article  PubMed  Google Scholar 

  5. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. 2015-03-01

    Article  CAS  PubMed  Google Scholar 

  6. Liang Z, Kidwell RL, Deng H, Xie Q. Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biol Med. 2020;17:9–19. 2020-01-01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J. 2017;23:262–9. 2017-09-01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maleszewska M, Wojtas B, Kamińska B. Deregulation of epigenetic mechanisms in cancer. Postępy Biochem. 2018;64:148.

    Article  PubMed  Google Scholar 

  10. Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Zhang J, Zhu J. The role of m 6 A RNA methylation in human cancer. Mol Cancer. 2019;18:103. 2019-01-01

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan H, Li X, Chen C, Fan Y, Zhou Q. [Research advances of m(6)A RNA methylation in non-small cell lung cancer]. Zhongguo Fei Ai Za Zhi [J Artic; Rev]. 2020;23:961–9. 2020-11-20

    PubMed  Google Scholar 

  13. Song Z, Jia G, Ma P, Cang S. Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci. 2021;276:119399.

    Article  CAS  PubMed  Google Scholar 

  14. Shen Y, Li C, Zhou L, Huang JA. G protein-coupled oestrogen receptor promotes cell growth of non-small cell lung cancer cells via YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 signalling. J Cell Mol Med. 2021;25:284–96.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Z, Cai Q, Zhang P, He B, Peng X, Tu G, et al. N6-methyladenosine RNA methylation regulator-related alternative splicing (AS) gene signature predicts non-small cell lung cancer prognosis. Front Mol Biosci. 2021;8:657087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang T, Kong S, Tao M, Ju S. The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer. 2020;19:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei W, Huo B, Shi X. miR-600 inhibits lung cancer via downregulating the expression of METTL3. Cancer Manag Res. 2019;11:1177–87.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J, et al. m(6) A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 2021;236:2649–58.

    Article  CAS  PubMed  Google Scholar 

  19. Ren J, Jian F, Jiang H, Sun Y, Pan S, Gu C, et al. Decreased expression of SFRP2 promotes development of the pituitary corticotroph adenoma by upregulating Wnt signaling. Int J Oncol. 2018;52:1934–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi J, Ma H, Wang H, Zhu W, Jiang S, Dou R. et al. Overexpressionof LINC00261 inhibits non-small cell lung cancer cells progression by interacting with miR-522-3p and suppressing Wnt signaling. J Cell Biochem. 2019;120:18378–87.

    Article  CAS  PubMed  Google Scholar 

  21. Xiao X, Xiao Y, Wen R, Zhang Y, Li X, Wang H. et al. Promoting roles of the secreted frizzled-related protein 2 as a Wnt agonist in lung cancer cells. Oncol Rep. 2015;34:2259–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou Y, Shi H, Du Y, Zhao G, Wang X, Li Q. et al. lncRNADLEU2 modulates cell proliferation and invasion of non-small cell lung cancer by regulating miR-30c-5p/SOX9 axis. Aging(Albany NY).2019;11:7386–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85. 2019-09-01

    Article  PubMed  Google Scholar 

  25. Asada K, Bolatkan A, Takasawa K, Komatsu M, Kaneko S, Hamamoto R Critical Roles of N(6)-Methyladenosine (m(6)A) in Cancer and Virus Infection. Biomolecules. [Journal Article; Research Support, Non-U.S. Gov’t; Review]. 2020;10.

  26. Bi Z, Liu Y, Zhao Y, Yao Y, Wu R, Liu Q. et al. A dynamic reversible RNA N(6) -methyladenosine modification: current status and perspectives. J Cell Physiol.2019;234:7948–56.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y, Wang M, Zhou J, Dong H, Wang S, Xu H. The important role of N6-methyladenosine RNA modification in non-small cell lung cancer. Genes-Basel. 2021;12:440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Guo X, Zhao M, Ao H, Leng X, Liu M, et al. Contributions and prognostic values of m(6) A RNA methylation regulators in non-small-cell lung cancer. J Cell Physiol. 2020;235:6043–57.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Li M, Zhang L, Chen Y, Zhang S. m6A demethylase FTO induces NELL2 expression by inhibiting E2F1 m6A modification leading to metastasis of non-small cell lung cancer. Mol Ther Oncolytics. 2021;21:367–76.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meng Q, Wang S, Zhou S, Liu H, Ma X, Zhou X, et al. Dissecting the m 6 A methylation affection on afatinib resistance in non-small cell lung cancer. Pharmacogenomics J. 2020;20:227.

    Article  CAS  PubMed  Google Scholar 

  31. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC. et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222maturation in m6A-dependent manner. Mol Cancer. 2019;18:110

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL. et al. RNAN6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J. et al. RNAN(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology. 2021;160:1284–300.

    Article  CAS  PubMed  Google Scholar 

  34. Wanna-Udom S, Terashima M, Lyu H, Ishimura A, Takino T, Sakari M. et al. Them6A methyltransferase METTL3 contributes to Transforming Growth Factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun.2020;524:150–5.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Liu S, Zhao T, Dang C METTL3mediated m6A modification of Bcl2 mRNA promotes nonsmall cell lung cancer progression. Oncol Rep. 2021 2021-08-01;46.

  36. Huang S, Luo S, Gong C, Liang L, Xiao Y, Li M, et al. MTTL3 upregulates microRNA-1246 to promote occurrence and progression of NSCLC via targeting paternally expressed gene 3. Mol Ther Nucleic Acids. 2021;24:542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X. et al. m(6)AmRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induceNSCLC drug resistance and metastasis. J Hematol Oncol. 2019;12:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116:2627–34. 2003-01-01

    Article  CAS  PubMed  Google Scholar 

  39. Shi Y, He B, You L, Jablons DM. Roles of secreted frizzled-related proteins in cancer. Acta Pharmacol Sin. 2007;28:1499–504.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Rong X, Chen Y, Su L. Methylation-mediated loss of SFRP2 enhances invasiveness of non–small cell lung cancer cells. Hum Exp Toxicol. 2018;37:155–62.

    Article  CAS  PubMed  Google Scholar 

  41. Li P, Zhao S, Hu Y. SFRP2 modulates nonsmall cell lung cancer A549 cell apoptosis and metastasis by regulating mitochondrial fission via Wnt pathways. Mol Med Rep. 2019;20:1925–32.

    CAS  PubMed  Google Scholar 

  42. Stewart DJ, Chang DW, Ye Y, Spitz M, Lu C, Shu X. et al. Wnt signaling pathway pharmacogenetics in non-small cell lung cancer. Pharmacogenomics J.2014;14:509–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu S, Chen X, Chen R, Wang J, Zhu G, Jiang J, et al. Diagnostic role of Wnt pathway gene promoter methylation in non small cell lung cancer. Oncotarget. 2017;8:36354–67.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Study on the safety and efficacy of transbronchial or percutaneous one-stop microwave ablation in the treatment of pulmonary nodules(GWJJ2021100304).

Author information

Authors and Affiliations

Authors

Contributions

PS and GZ conceived the study; DZ conducted the experiments; YH analyzed the data; SZ wrote the manuscript; all the authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Dong Zhang or Yi Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This study protocol was approved by the Ethics Committee of Chinese PLA General Hospital. All manipulations on mice conformed to the standards of the Institutional Animal Care and Utilization Committee of Chinese PLA General Hospital.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Song, P., Zhou, G. et al. METTL3 promotes the malignancy of non-small cell lung cancer by N6-methyladenosine modifying SFRP2. Cancer Gene Ther 30, 1094–1104 (2023). https://doi.org/10.1038/s41417-023-00614-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00614-1

Search

Quick links