Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RAB3D/MDM2/β-catenin/c-MYC axis exacerbates the malignant behaviors of acute myeloid leukemia cells in vitro and in vivo

Abstract

RAB3D, a small Ras-like GTPase involved in regulating secretory pathway, plays a cancer-promoting role in several solid tumors. However, its role in leukemogenesis remains unknown yet. Acute myeloid leukemia (AML) is a common acute leukemia with a high mortality. Here, we found the higher expression of RAB3D in bone marrow mononuclear cells derived from AML patients (n = 54) versus healthy participants (n = 20). The following loss- and gain-of-function experiments demonstrated that RAB3D promoted growth, enhanced colony formation and accelerated G1/S transition of U937, THP-1 and KG-1 AML cells. RAB3D silencing inhibited tumorigenesis of AML cells in vivo and delayed AML cells-induced death of mice. Interestingly, the expression of RAB3D is positively correlated with that of an oncogene mouse double minute 2 (MDM2) in bone marrow mononuclear cells of AML patients (r = 0.923, p < 0.001). Intracellular MDM2 was conjugated with more ubiquitins and degraded faster when RAB3D was silenced. A commonly therapeutic target of AML, β-catenin signaling, was activated by RAB3D overexpression, but deactivated after MDM2 was silenced. The RAB3D-induced proliferation acceleration and β-catenin activation were abolished by MDM2 knockdown, implying that RAB3D function by stabilizing MDM2. In addition, c-MYC, a β-catenin downstream effector, was recruited directly to the RAB3D gene promoter (-360/-349 and -136/-125 sites) and induced its transcription. Collectively, this study demonstrates that RAB3D may exacerbate the malignant behaviors of AML cells through forming a positive feedback loop with MDM2/β-catenin/c-MYC signaling. RAB3D might be a novel target of clinical AML treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RAB3D was upregulated in AML specimens.
Fig. 2: RAB3D facilitated the growth of AML cells in vitro.
Fig. 3: RAB3D promoted malignancy of AML cells in vivo.
Fig. 4: RAB3D activated β-catenin signaling pathway in AML cells.
Fig. 5: RAB3D blocked the ubiquitination and degradation of MDM2 in AML cells.
Fig. 6: The effects of RAB3D on AML cells were antagonized by MDM2 knockdown.
Fig. 7: The transcription of RAB3D was activated by c-MYC.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are included in the article and its supplementary files, and are available from the corresponding author upon reasonable request.

References

  1. Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31:63–76.

    Article  CAS  Google Scholar 

  2. Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet. 2013;381:484–95.

    Article  Google Scholar 

  3. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606.

    Article  Google Scholar 

  4. Newell LF, Cook RJ. Advances in acute myeloid leukemia. BMJ. 2021;375:n2026.

    Article  Google Scholar 

  5. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441.

    Article  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  Google Scholar 

  7. Millar AL, Pavios NJ, Xu J, Zheng MH. Rab3D: a regulator of exocytosis in non-neuronal cells. Histol Histopathol. 2002;17:929–36.

    CAS  Google Scholar 

  8. Larkin JM, Woo B, Balan V, Marks DL, Oswald BJ, LaRusso NF, et al. Rab3D, a small GTP-binding protein implicated in regulated secretion, is associated with the transcytotic pathway in rat hepatocytes. Hepatology. 2000;32:348–56.

    Article  CAS  Google Scholar 

  9. Pavlos NJ, Xu J, Riedel D, Yeoh JS, Teitelbaum SL, Papadimitriou JM, et al. Rab3D regulates a novel vesicular trafficking pathway that is required for osteoclastic bone resorption. Mol Cell Biol. 2005;25:5253–69.

    Article  CAS  Google Scholar 

  10. Tuvim MJ, Adachi R, Chocano JF, Moore RH, Lampert RM, Zera E, et al. Rab3D, a small GTPase, is localized on mast cell secretory granules and translocates to the plasma membrane upon exocytosis. Am J Respir Cell Mol Biol. 1999;20:79–89.

    Article  CAS  Google Scholar 

  11. Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J. 2021;288:36–55.

    Article  CAS  Google Scholar 

  12. Luo Y, Ye GY, Qin SL, Mu YF, Zhang L, Qi Y, et al. High expression of Rab3D predicts poor prognosis and associates with tumor progression in colorectal cancer. Int J Biochem Cell Biol. 2016;75:53–62.

    Article  CAS  Google Scholar 

  13. Yang J, Liu W, Lu X, Fu Y, Li L, Luo Y. High expression of small GTPase Rab3D promotes cancer progression and metastasis. Oncotarget. 2015;6:11125–38.

    Article  Google Scholar 

  14. Zhang J, Kong R, Sun L. Silencing of Rab3D suppresses the proliferation and invasion of esophageal squamous cell carcinoma cells. Biomed Pharmacother. 2017;91:402–7.

    Article  CAS  Google Scholar 

  15. Henningsen KM, Manzini V, Magerhans A, Gerber S, Dobbelstein M. MDM2-driven ubiquitination rapidly removes p53 from its cognate promoters. Biomolecules. 2022;12:22.

  16. Michael D, Oren M. The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol. 2003;13:49–58.

    Article  CAS  Google Scholar 

  17. Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M. Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle. 2006;5:2778–86.

    Article  CAS  Google Scholar 

  18. Khurana A, Shafer DA. MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388). Onco Targets Ther. 2019;12:2903–10.

    Article  CAS  Google Scholar 

  19. Fang DD, Tang Q, Kong Y, Rong T, Wang Q, Li N, et al. MDM2 inhibitor APG-115 exerts potent antitumor activity and synergizes with standard-of-care agents in preclinical acute myeloid leukemia models. Cell Death Discov. 2021;7:90.

    Article  CAS  Google Scholar 

  20. Cao Z, Xue J, Cheng Y, Wang J, Liu Y, Li H, et al. MDM2 promotes genome instability by ubiquitinating the transcription factor HBP1. Oncogene. 2019;38:4835–55.

    Article  CAS  Google Scholar 

  21. Sampson EM, Haque ZK, Ku MC, Tevosian SG, Albanese C, Pestell RG, et al. Negative regulation of the Wnt-beta-catenin pathway by the transcriptional repressor HBP1. EMBO J. 2001;20:4500–11.

    Article  CAS  Google Scholar 

  22. Gruszka AM, Valli D, Alcalay M. Wnt signalling in acute myeloid leukaemia. Cells. 2019;8:1403.

  23. Neame PB, Soamboonsrup P, Browman GP, Meyer RM, Benger A, Wilson WE, et al. Classifying acute leukemia by immunophenotyping: a combined FAB-immunologic classification of AML. Blood. 1986;68:1355–62.

    Article  CAS  Google Scholar 

  24. Sundstrom C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976;17:565–77.

    Article  CAS  Google Scholar 

  25. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26:171–6.

    Article  CAS  Google Scholar 

  26. Schottelius A, Brennscheidt U, Ludwig WD, Mertelsmann RH, Herrmann F, Lubbert M. Mechanisms of p53 alteration in acute leukemias. Leukemia. 1994;8:1673–81.

    CAS  Google Scholar 

  27. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.

    Article  CAS  Google Scholar 

  28. Thut CJ, Goodrich JA, Tjian R. Repression of p53-mediated transcription by MDM2: a dual mechanism. Genes Dev. 1997;11:1974–86.

    Article  CAS  Google Scholar 

  29. Ranaweera RS, Yang X. Auto-ubiquitination of Mdm2 enhances its substrate ubiquitin ligase activity. J Biol Chem. 2013;288:18939–46.

    Article  CAS  Google Scholar 

  30. Yan H, Fernandez M, Wang J, Wu S, Wang R, Lou Z, et al. B cell endosomal RAB7 promotes TRAF6 K63 polyubiquitination and NF-kappaB activation for antibody class-switching. J Immunol. 2020;204:1146–57.

    Article  CAS  Google Scholar 

  31. Liu J, Zhu Z, Liu Y, Wei L, Li B, Mao F, et al. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci. 2020;242:117228.

    Article  CAS  Google Scholar 

  32. Ochocka AM, Kampanis P, Nicol S, Allende-Vega N, Cox M, Marcar L, et al. FKBP25, a novel regulator of the p53 pathway, induces the degradation of MDM2 and activation of p53. FEBS Lett. 2009;583:621–6.

    Article  CAS  Google Scholar 

  33. Salcedo A, Mayor F Jr., Penela P. Mdm2 is involved in the ubiquitination and degradation of G-protein-coupled receptor kinase 2. EMBO J. 2006;25:4752–62.

    Article  CAS  Google Scholar 

  34. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S, et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem. 2009;284:13987–14000.

    Article  CAS  Google Scholar 

  35. Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  Google Scholar 

  36. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, et al. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10:101.

    Article  Google Scholar 

  37. Wang L, Gesty-Palmer D, Fields TA, Spurney RF. Inhibition of WNT signaling by G protein-coupled receptor (GPCR) kinase 2 (GRK2). Mol Endocrinol. 2009;23:1455–65.

    Article  CAS  Google Scholar 

  38. Liu H, Yin J, Wang H, Jiang G, Deng M, Zhang G, et al. FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 2015;27:510–8.

    Article  CAS  Google Scholar 

  39. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

    Article  CAS  Google Scholar 

  40. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  Google Scholar 

  41. Luo H, Li Q, O’Neal J, Kreisel F, Le Beau MM, Tomasson MH. c-Myc rapidly induces acute myeloid leukemia in mice without evidence of lymphoma-associated antiapoptotic mutations. Blood. 2005;106:2452–61.

    Article  CAS  Google Scholar 

  42. Fan Y, Xin XY, Chen BL, Ma X. Knockdown of RAB25 expression by RNAi inhibits growth of human epithelial ovarian cancer cells in vitro and in vivo. Pathology. 2006;38:561–7.

    Google Scholar 

  43. Cheng KW, Lahad JP, Kuo WL, Lapuk A, Yamada K, Auersperg N, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004;10:1251–6.

    Article  CAS  Google Scholar 

  44. Cheng KW, Lahad JP, Gray JW, Mills GB. Emerging role of RAB GTPases in cancer and human disease. Cancer Res. 2005;65:2516–9.

    Article  CAS  Google Scholar 

  45. van Weeren L, de Graaff AM, Jamieson JD, Batenburg JJ, Valentijn JA. Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells. Am J Respir Cell Mol Biol. 2004;30:288–95.

    Article  Google Scholar 

  46. Ma J, Li Q, Li Y. CircRNA PRH1-PRR4 stimulates RAB3D to regulate the malignant progression of NSCLC by sponging miR-877-5p. Thorac Cancer. 2022;13:690–701.

  47. Li S, Liu Y, Bai Y, Chen M, Cheng D, Wu M, et al. Ras homolog family member F, filopodia associated promotes hepatocellular carcinoma metastasis by altering the metabolic status of cancer cells through RAB3D. Hepatology. 2021;73:2361–79.

    Article  CAS  Google Scholar 

  48. Boyiadzis M, Whiteside TL. Exosomes in acute myeloid leukemia inhibit hematopoiesis. Curr Opin Hematol. 2018;25:279–84.

    Article  CAS  Google Scholar 

  49. Gonzales F, Barthelemy A, Peyrouze P, Fenwarth L, Preudhomme C, Duployez N, et al. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opin Ther Targets. 2021;25:299–309.

    Article  CAS  Google Scholar 

  50. Cunningham L, Finckbeiner S, Hyde RK, Southall N, Marugan J, Yedavalli VR, et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc Natl Acad Sci USA. 2012;109:14592–7.

    Article  CAS  Google Scholar 

  51. Okuda T, Nishimura M, Nakao M, Fujita Y. RUNX1/AML1: a central player in hematopoiesis. Int J Hematol. 2001;74:252–7.

    Article  CAS  Google Scholar 

  52. Abdul-Nabi AM, Yassin ER, Varghese N, Deshmukh H, Yaseen NR. In vitro transformation of primary human CD34+ cells by AML fusion oncogenes: early gene expression profiling reveals possible drug target in AML. PLoS ONE. 2010;5:e12464.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Youth Fund Project of the National Natural Science Foundation of China (81600133) and the Basic Research and Cultivation Fund for Young Teachers of Zhengzhou University (JC21854036).

Author information

Authors and Affiliations

Authors

Contributions

JL designed the project, and conducted the experiments. YW, WM, ZC, HW, and QY synergistically completed the experiments and data analysis. JL drafted the manuscript. All authors read the manuscript and approved the submission.

Corresponding author

Correspondence to Jian Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Mai, Y., Wang, Y. et al. RAB3D/MDM2/β-catenin/c-MYC axis exacerbates the malignant behaviors of acute myeloid leukemia cells in vitro and in vivo. Cancer Gene Ther 30, 335–344 (2023). https://doi.org/10.1038/s41417-022-00549-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00549-z

This article is cited by

Search

Quick links