Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumor-derived ARHGAP35 mutations enhance the Gα13-Rho signaling axis in human endometrial cancer

Abstract

Dysregulated G protein-coupled receptor signaling is involved in the formation and progression of human cancers. The heterotrimeric G protein Gα13 is highly expressed in various cancers and regulates diverse cancer-related transcriptional networks and cellular functions by activating Rho. Herein, we demonstrate that increased expression of Gα13 promotes cell proliferation through activation of Rho and the transcription factor AP-1 in human endometrial cancer. Of interest, the RhoGTPase activating protein (RhoGAP), ARHGAP35 is frequently mutated in human endometrial cancers. Among the 509 endometrial cancer samples in The Cancer Genome Atlas database, 108 harbor 152 mutations at 126 different positions within ARHGAP35, representing a somatic mutation frequency of 20.2%. We evaluated the effect of 124 tumor-derived ARHGAP35 mutations on Gα13-mediated Rho and AP-1 activation. The RhoGAP activity of ARHGAP35 was impaired by 55 of 124 tumor-derived mutations, comprised of 23 nonsense, 15 frame-shift, 15 missense mutations, and two in-frame deletions. Considering that ARHGAP35 is mutated in >2% of all tumors, it ranks among the top 30 most significantly mutated genes in human cancer. Our data suggest potential roles of ARHGAP35 as an oncogenic driver gene, providing novel therapeutic opportunities for endometrial cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gα13 expression in human endometrial tissues.
Fig. 2: Gα13 expression promotes cell proliferation and AP-1 activation in human endometrial cells.
Fig. 3: Gα13 activation is involved in AP-1 activation.
Fig. 4: Rho inhibition perturbed Gα13-mediated AP-1 activation.
Fig. 5: The role of ARHGAP35 in Gα13-induced Rho and AP-1 activation.
Fig. 6: The effects of tumor-derived ARHGAP35 mutations on Gα13-induced activation of Rho and AP-1 and foci formation.

Similar content being viewed by others

Data availability

The endometrial cancer patient data were generated by TCGA and downloaded with cBioportal (www.cbioportal.com).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  Google Scholar 

  2. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. Endometrial cancer. Lancet. 2005;366:491–505.

    Article  Google Scholar 

  3. Urick ME, Bell DW. Clinical actionability of molecular targets in endometrial cancer. Nat Rev Cancer. 2019;19:510–21.

    Article  CAS  Google Scholar 

  4. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  Google Scholar 

  5. Cherniack AD, Shen H, Walter V, Stewart C, Murray BA, Bowlby R, et al. Integrated molecular characterization of uterine carcinosarcoma. Cancer Cell. 2017;31:411–23.

    Article  CAS  Google Scholar 

  6. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharm. 2003;63:1256–72.

    Article  CAS  Google Scholar 

  7. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991;252:802–8.

    Article  CAS  Google Scholar 

  8. Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  CAS  Google Scholar 

  9. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharm Ther. 2004;104:173–206.

    Article  Google Scholar 

  10. Arang N, Gutkind JS. G protein-coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 2020;594:4201–32.

    Article  CAS  Google Scholar 

  11. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  13. O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer. 2013;13:412–24.

    Article  Google Scholar 

  14. Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P, Simaan M, et al. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal. 2011;4:ra60.

    Article  Google Scholar 

  15. Zhang JX, Yun M, Xu Y, Chen JW, Weng HW, Zheng ZS, et al. GNA13 as a prognostic factor and mediator of gastric cancer progression. Oncotarget. 2016;7:4414–27.

    Article  Google Scholar 

  16. Rasheed SAK, Leong HS, Lakshmanan M, Raju A, Dadlani D, Chong FT, et al. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene. 2018;37:1340–53.

    Article  CAS  Google Scholar 

  17. Lee SJ, Yang JW, Cho IJ, Kim WD, Cho MK, Lee CH, et al. The gep oncogenes, Galpha(12) and Galpha(13), upregulate the transforming growth factor-beta1 gene. Oncogene. 2009;28:1230–40.

    Article  CAS  Google Scholar 

  18. Grzelinski M, Pinkenburg O, Buch T, Gold M, Stohr S, Kalwa H, et al. Critical role of G(alpha)12 and G(alpha)13 for human small cell lung cancer cell proliferation in vitro and tumor growth in vivo. Clin Cancer Res. 2010;16:1402–15.

    Article  CAS  Google Scholar 

  19. Yagi H, Asanoma K, Ohgami T, Ichinoe A, Sonoda K, Kato K. GEP oncogene promotes cell proliferation through YAP activation in ovarian cancer. Oncogene. 2016;35:4471–80.

    Article  CAS  Google Scholar 

  20. Yagi H, Onoyama I, Asanoma K, Hori E, Yasunaga M, Kodama K, et al. Galpha13-mediated LATS1 down-regulation contributes to epithelial-mesenchymal transition in ovarian cancer. FASEB J. 2019;33:13683–94.

    Article  CAS  Google Scholar 

  21. Lim WK, Chai X, Ghosh S, Ray D, Wang M, Rasheed SAK, et al. Galpha-13 induces CXC motif chemokine ligand 5 expression in prostate cancer cells by transactivating NF-kappaB. J Biol Chem. 2019;294:18192–206.

    Article  CAS  Google Scholar 

  22. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    Article  CAS  Google Scholar 

  23. Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol. 2008;9:846–59.

    Article  CAS  Google Scholar 

  24. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80.

    Article  CAS  Google Scholar 

  25. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9:690–701.

    Article  CAS  Google Scholar 

  26. Rasheed SAK, Subramanyan LV, Lim WK, Udayappan UK, Wang M, Casey PJ. The emerging roles of Galpha12/13 proteins on the hallmarks of cancer in solid tumors. Oncogene. 2022;41:147–58.

    Article  CAS  Google Scholar 

  27. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010;466:869–73.

    Article  CAS  Google Scholar 

  28. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  Google Scholar 

  29. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–7.

    Article  CAS  Google Scholar 

  30. Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O’Brien JM, et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009;457:599–602.

    Article  Google Scholar 

  31. Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, et al. Mutations in GNA11 in uveal melanoma. N. Engl J Med. 2010;363:2191–9.

    Article  Google Scholar 

  32. Pullikuth AK, Catling AD. Extracellular signal-regulated kinase promotes Rho-dependent focal adhesion formation by suppressing p190A RhoGAP. Mol Cell Biol. 2010;30:3233–48.

    Article  CAS  Google Scholar 

  33. Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA, Settleman J, et al. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell. 2006;127:1027–39.

    Article  CAS  Google Scholar 

  34. Kyo S, Nakamura M, Kiyono T, Maida Y, Kanaya T, Tanaka M, et al. Successful immortalization of endometrial glandular cells with normal structural and functional characteristics. Am J Pathol. 2003;163:2259–69.

    Article  CAS  Google Scholar 

  35. Kato H, Inoue T, Asanoma K, Nishimura C, Matsuda T, Wake N. Induction of human endometrial cancer cell senescence through modulation of HIF-1alpha activity by EGLN1. Int J Cancer. 2006;118:1144–53.

    Article  CAS  Google Scholar 

  36. Juneja J, Casey PJ. Role of G12 proteins in oncogenesis and metastasis. Br J Pharm. 2009;158:32–40.

    Article  CAS  Google Scholar 

  37. Spicher K, Kalkbrenner F, Zobel A, Harhammer R, Nurnberg B, Soling A, et al. G12 and G13 alpha-subunits are immunochemically detectable in most membranes of various mammalian cells and tissues. Biochem Biophys Res Commun. 1994;198:906–14.

    Article  CAS  Google Scholar 

  38. Xu N, Voyno-Yasenetskaya T, Gutkind JS. Potent transforming activity of the G13 alpha subunit defines a novel family of oncogenes. Biochem Biophys Res Commun. 1994;201:603–9.

    Article  CAS  Google Scholar 

  39. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007;7:79–94.

    Article  CAS  Google Scholar 

  40. Aittaleb M, Boguth CA, Tesmer JJ. Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol Pharm. 2010;77:111–25.

    Article  CAS  Google Scholar 

  41. Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene. 2001;20:1661–8.

    Article  CAS  Google Scholar 

  42. Hart MJ, Jiang X, Kozasa T, Roscoe W, Singer WD, Gilman AG, et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 1998;280:2112–4.

    Article  CAS  Google Scholar 

  43. Marinissen MJ, Servitja JM, Offermanns S, Simon MI, Gutkind JS. Thrombin protease-activated receptor-1 signals through Gq- and G13-initiated MAPK cascades regulating c-Jun expression to induce cell transformation. J Biol Chem. 2003;278:46814–25.

    Article  CAS  Google Scholar 

  44. Kumar RN, Shore SK, Dhanasekaran N. Neoplastic transformation by the gep oncogene, Galpha12, involves signaling by STAT3. Oncogene. 2006;25:899–906.

    Article  CAS  Google Scholar 

  45. Goldsmith ZG, Dhanasekaran DN. G protein regulation of MAPK networks. Oncogene. 2007;26:3122–42.

    Article  CAS  Google Scholar 

  46. Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y, et al. The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2006;103:8173–8.

    Article  CAS  Google Scholar 

  47. Kelly P, Stemmle LN, Madden JF, Fields TA, Daaka Y, Casey PJ. A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. J Biol Chem. 2006;281:26483–90.

    Article  CAS  Google Scholar 

  48. Bartolome RA, Wright N, Molina-Ortiz I, Sanchez-Luque FJ, Teixido J. Activated G(alpha)13 impairs cell invasiveness through p190RhoGAP-mediated inhibition of RhoA activity. Cancer Res. 2008;68:8221–30.

    Article  CAS  Google Scholar 

  49. Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, et al. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene. 2006;25:2234–44.

    Article  CAS  Google Scholar 

  50. Martin CB, Mahon GM, Klinger MB, Kay RJ, Symons M, Der CJ, et al. The thrombin receptor, PAR-1, causes transformation by activation of Rho-mediated signaling pathways. Oncogene. 2001;20:1953–63.

    Article  CAS  Google Scholar 

  51. Offermanns S, Laugwitz KL, Spicher K, Schultz G. G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci USA. 1994;91:504–8.

    Article  CAS  Google Scholar 

  52. Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64:8604–12.

    Article  CAS  Google Scholar 

  53. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–9.

    Article  CAS  Google Scholar 

  54. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501.

    Article  CAS  Google Scholar 

  55. Sudhakar M, Rengaswamy R, Raman K. Novel ratio-metric features enable the identification of new driver genes across cancer types. Sci Rep. 2022;12:5.

    Article  Google Scholar 

  56. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45:1134–40.

    Article  CAS  Google Scholar 

  57. Settleman J, Albright CF, Foster LC, Weinberg RA. Association between GTPase activators for Rho and Ras families. Nature. 1992;359:153–4.

    Article  CAS  Google Scholar 

  58. Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366:643–54.

    Article  CAS  Google Scholar 

  59. Cerione RA, Zheng Y. The Dbl family of oncogenes. Curr Opin Cell Biol. 1996;8:216–22.

    Article  CAS  Google Scholar 

  60. Tcherkezian J, Lamarche-Vane N. Current knowledge of the large RhoGAP family of proteins. Biol Cell. 2007;99:67–86.

    Article  CAS  Google Scholar 

  61. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016;48:607–16.

    Article  CAS  Google Scholar 

  62. Frank SR, Kollmann CP, Luong P, Galli GG, Zou L, Bernards A, et al. p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. J Cell Biol. 2018;217:3183–201.

    Article  CAS  Google Scholar 

  63. Ouyang H, Luong P, Frodin M, Hansen SH. p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene. 2020;39:5570–87.

    Article  CAS  Google Scholar 

  64. Lac V, Nazeran TM, Tessier-Cloutier B, Aguirre-Hernandez R, Albert A, Lum A, et al. Oncogenic mutations in histologically normal endometrium: the new normal? J Pathol. 2019;249:173–81.

    Article  CAS  Google Scholar 

  65. Moore L, Leongamornlert D, Coorens THH, Sanders MA, Ellis P, Dentro SC, et al. The mutational landscape of normal human endometrial epithelium. Nature. 2020;580:640–6.

    Article  CAS  Google Scholar 

  66. Yamaguchi M, Nakaoka H, Suda K, Yoshihara K, Ishiguro T, Yachida N, et al. Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium. Nat Commun. 2022;13:943.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms. Michiyo Okada and the Research Support Center, Graduate School of Medical Science, Kyushu University for technical support. We also thank James P. Mahaffey, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. This study was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (21K09496).

Author information

Authors and Affiliations

Authors

Contributions

HY and KK designed research; HY and EH performed experiments; IO, KA, MK, SM, KK, YM and NH analyzed data; KH, MY, TO, KO and HY interpreted results of experiments; HY prepared figures; HY and KK drafted and edited the manuscript.

Corresponding author

Correspondence to Hiroshi Yagi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, H., Onoyama, I., Asanoma, K. et al. Tumor-derived ARHGAP35 mutations enhance the Gα13-Rho signaling axis in human endometrial cancer. Cancer Gene Ther 30, 313–323 (2023). https://doi.org/10.1038/s41417-022-00547-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00547-1

Search

Quick links