Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MiR-330-5p and miR-1270 target essential components of RNA polymerase I transcription and exhibit a novel tumor suppressor role in lung adenocarcinoma

Abstract

Upregulation of RNA polymerase I (Pol I) transcription and the overexpression of Pol I transcriptional machinery are crucial molecular alterations favoring malignant transformation. However, the causal molecular mechanism(s) of this aberration remain largely unknown. Here, we found that Pol I transcription and its core machinery are upregulated in lung adenocarcinoma (LUAD). We show that the loss of miRNAs (miR)-330-5p and miR-1270 expression contributes to the upregulation of Pol I transcription in LUAD. Constitutive overexpression of these miRs in LUAD cell lines suppressed the expression of core components of Pol I transcription, and reduced global ribosomal RNA synthesis. Importantly, miR-330-5p/miR-1270-mediated repression of Pol I transcription exerted multiple tumor suppressive functions including reduced proliferation, cell cycle arrest, enhanced apoptosis, reduced migration, increased drug sensitivity, and reduced tumor burden in a mouse xenograft model. Mechanistically, the downregulation of miR-330-5p and miR-1270 is regulated by Pol I subunit-derived circular RNA circ_0055467 and DNA hypermethylation, respectively. This study uncovers a novel miR-330-5p/miR-1270 mediated post-transcriptional regulation of Pol I transcription, and establish tumor suppressor properties of these miRs in LUAD. Ultimately, our findings provide a rationale for the therapeutic targeting of Pol I transcriptional machinery for LUAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pol I transcription in LUAD.
Fig. 2: miR-330-5p and miR-1270 target PIC components of Pol I transcription.
Fig. 3: Overexpression of miR-330-5p and miR-1270 inhibits rRNA synthesis.
Fig. 4: Effect of miR-330-5p and miR-1270 on cell proliferation, cell cycle and apoptosis.
Fig. 5: Effect of miR-330-5p and miR-1270 on cell migration and cisplatin sensitivity.
Fig. 6: Regulation of miR-330-5p and miR-1270.
Fig. 7: MiR-330-5p and miR-1270 reduce tumor burden in-vivo.
Fig. 8: Graphical summary depicting regulatory networks involved in the regulation of Pol I transcription in LUAD.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary data files. TCGA gene expression data for LUAD is available from UCSC Xena browser. The CpG island methylation track (cg19204924) of LUAD or normal is available from TCGA Wanderer database (http://maplab.imppc.org/wanderer/).

References

  1. Goodfellow SJ, Zomerdijk JC. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem. 2013;61:211–36.

    Article  CAS  Google Scholar 

  2. Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer. 2003;3:179–92.

    Article  CAS  Google Scholar 

  3. White RJ. RNA polymerases I and III, growth control and cancer. Nat Rev Mol Cell Biol. 2005;6:69–78.

    Article  CAS  Google Scholar 

  4. Babaian A, Rothe K, Girodat D, Minia I, Djondovic S, Milek M, et al. Loss of m(1)acp(3)Psi ribosomal RNA modification is a major feature of cancer. Cell Rep. 2020;31:107611.

    Article  CAS  Google Scholar 

  5. Bywater MJ, Poortinga G, Sanij E, Hein N, Peck A, Cullinane C, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. 2012;22:51–65.

    Article  CAS  Google Scholar 

  6. Rossetti S, Wierzbicki AJ, Sacchi N. Mammary epithelial morphogenesis and early breast cancer. Evidence of involvement of basal components of the RNA Polymerase I transcription machinery. Cell Cycle. 2016;15:2515–26.

    Article  CAS  Google Scholar 

  7. Grummt I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 2003;17:1691–702.

    Article  CAS  Google Scholar 

  8. Bell SP, Learned RM, Jantzen HM, Tjian R. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 1988;241:1192–7.

    Article  CAS  Google Scholar 

  9. Miller G, Panov KI, Friedrich JK, Trinkle-Mulcahy L, Lamond AI, Zomerdijk JC. hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO J. 2001;20:1373–82.

    Article  CAS  Google Scholar 

  10. Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 2006;25:6384–91.

    Article  CAS  Google Scholar 

  11. Stefanovsky VY, Pelletier G, Hannan R, Gagnon-Kugler T, Rothblum LI, Moss T. An immediate response of ribosomal transcription to growth factor stimulation in mammals is mediated by ERK phosphorylation of UBF. Mol Cell. 2001;8:1063–73.

    Article  CAS  Google Scholar 

  12. Zhao J, Yuan X, Frodin M, Grummt I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell. 2003;11:405–13.

    Article  CAS  Google Scholar 

  13. Lin CY, Navarro S, Reddy S, Comai L. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res. 2006;34:4752–66.

    Article  CAS  Google Scholar 

  14. Drygin D, Rice WG, Grummt I. The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharm Toxicol. 2010;50:131–56.

    Article  CAS  Google Scholar 

  15. Sharifi S, Bierhoff H. Regulation of RNA polymerase I transcription in development, disease, and aging. Annu Rev Biochem. 2018;87:51–73.

    Article  CAS  Google Scholar 

  16. Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009;21:452–60.

    Article  CAS  Google Scholar 

  17. Palmero EI, de Campos SG, Campos M, de Souza NC, Guerreiro ID, Carvalho AL, et al. Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol. 2011;34:363–70.

    Article  CAS  Google Scholar 

  18. Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer. 2010;126:1283–90.

    CAS  Google Scholar 

  19. Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther. 2010;17:523–31.

    Article  CAS  Google Scholar 

  20. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  22. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state atlas. Nucleic Acids Res. 2019;47:D900–D8.

    Article  CAS  Google Scholar 

  23. L McInnes, J Healy, N Saul, L Großberger. UMAP: Uniform manifold approximation and projection. J Open Source Softw. 2018. https://doi.org/10.21105/joss.00861.

  24. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  25. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One. 2018;13:e0206239.

    Article  Google Scholar 

  26. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42.

    Article  Google Scholar 

  27. Diez-Villanueva A, Mallona I, Peinado MA. Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenetics Chromatin. 2015;8:22.

    Article  Google Scholar 

  28. Naidu S, Shi L, Magee P, Middleton JD, Lagana A, Sahoo S, et al. PDGFR-modulated miR-23b cluster and miR-125a-5p suppress lung tumorigenesis by targeting multiple components of KRAS and NF-kB pathways. Sci Rep. 2017;7:15441.

    Article  Google Scholar 

  29. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  Google Scholar 

  30. Gupta RK, Kuznicki J. Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing. Cells 2020;9:1751.

  31. Mayer C, Grummt I. Cellular stress and nucleolar function. Cell Cycle. 2005;4:1036–8.

    Article  CAS  Google Scholar 

  32. Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 1995;55:5187–90.

    CAS  Google Scholar 

  33. Honda R, Lowe ED, Dubinina E, Skamnaki V, Cook A, Brown NR, et al. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. EMBO J. 2005;24:452–63.

    Article  CAS  Google Scholar 

  34. Kumazawa T, Nishimura K, Katagiri N, Hashimoto S, Hayashi Y, Kimura K. Gradual reduction in rRNA transcription triggers p53 acetylation and apoptosis via MYBBP1A. Sci Rep. 2015;5:10854.

    Article  CAS  Google Scholar 

  35. Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem. 2000;275:7337–42.

    Article  CAS  Google Scholar 

  36. Prakash V, Carson BB, Feenstra JM, Dass RA, Sekyrova P, Hoshino A, et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun. 2019;10:2110.

    Article  Google Scholar 

  37. Drapela S, Bouchal J, Jolly MK, Culig Z, Soucek K. ZEB1: A critical regulator of cell plasticity, DNA damage response, and therapy resistance. Front Mol Biosci. 2020;7:36.

    Article  CAS  Google Scholar 

  38. Suzuki H, Maruyama R, Yamamoto E, Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 2013;4:258.

    Article  Google Scholar 

  39. Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2011;585:2087–99.

    Article  CAS  Google Scholar 

  40. Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26:29.

    Article  Google Scholar 

  41. Penzo M, Montanaro L, Trere D, Derenzini M. The ribosome biogenesis-cancer connection. Cells. 2019;8:55.

  42. Ferreira R, Schneekloth JS, Jr., Panov KI, Hannan KM, Hannan RD. Targeting the RNA polymerase I transcription for cancer therapy comes of age. Cells. 2020;9:266.

  43. Yuan X, Zhou Y, Casanova E, Chai M, Kiss E, Grone HJ, et al. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis. Mol Cell. 2005;19:77–87.

    Article  CAS  Google Scholar 

  44. Low JY, Sirajuddin P, Moubarek M, Agarwal S, Rege A, Guner G, et al. Effective targeting of RNA polymerase I in treatment-resistant prostate cancer. Prostate 2019;79:1837–51.

    Article  CAS  Google Scholar 

  45. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  Google Scholar 

  46. Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest. 2016;126:3219–35.

    Article  Google Scholar 

  47. Zhang M, Han Y, Zheng Y, Zhang Y, Zhao X, Gao Z, et al. ZEB1-activated LINC01123 accelerates the malignancy in lung adenocarcinoma through NOTCH signaling pathway. Cell Death Dis. 2020;11:981.

    Article  Google Scholar 

  48. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–11.

    Article  CAS  Google Scholar 

  49. Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, et al. Circular RNAs (circRNAs) in cancer. Cancer Lett. 2018;425:134–42.

    Article  CAS  Google Scholar 

  50. Chi Y, Zheng W, Bao G, Wu L, He X, Gan R, et al. Circular RNA circ_103820 suppresses lung cancer tumorigenesis by sponging miR-200b-3p to release LATS2 and SOCS6. Cell Death Dis. 2021;12:185.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to IIT Ropar for funding. We thank the animal facility at IISER, Mohali, Punjab, India for in-vivo studies. We thank Dr. Juhi Tayal and Dr. Anurag Mehta, Biorepository facility, RGCIRC, New Delhi, India, for providing tumor samples. We heartfully thank Prof. Galande IISER Pune, for H23 cells and Dr. Harshan, CCMB Hyderabad, for ZEB1 expression vector. Special thanks to Arpita Karmakar and Deepika for their help during revision work, and Sheetal Yadav for manuscript editing.

Funding

Seed grant—IIT Ropar granted to Dr. Srivatsava Naidu.

Author information

Authors and Affiliations

Authors

Contributions

S.N. conceived and designed the study, interpreted the data, drafted and revised the manuscript. S.S. acquired data, handled animal work and played role in interpreting the results, drafted the manuscript. E.G. acquired data and prepared figures. S.S.S. acquired data, played a role in computational analysis. S.C. and A.C. contributed in animal work and project management. S.K., G.A. contributed in computational analysis. All authors approved the final version, agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Srivatsava Naidu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Mice work protocols were approved (IISERM/SAFE/PRT/2020/005) by the institutional animal ethics committee, Indian Institute of Science Education and Research (IISER) Mohali, as per the standards of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), and comply with the ARRIVE guidelines. Frozen specimens of LUAD or NAT were obtained from Rajiv Gandhi Cancer Institute and Research Centre (RGCI&RC), New Delhi, India, in accordance with the guidelines of the institutional review board (Approval number: RGCIRC/IRB/343/2019) and the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saproo, S., Sarkar, S.S., Gupta, E. et al. MiR-330-5p and miR-1270 target essential components of RNA polymerase I transcription and exhibit a novel tumor suppressor role in lung adenocarcinoma. Cancer Gene Ther 30, 288–301 (2023). https://doi.org/10.1038/s41417-022-00544-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00544-4

Search

Quick links