Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells

Abstract

Mitochondrial serine hydroxymethyltransferase (SHMT2) catalyzes the conversion of serine to glycine and concomitantly produces one-carbon units to support cell growth and is upregulated in various cancer cells. SHMT2 knockdown triggers cell apoptosis; however, the detailed mechanism of apoptosis induced by SHMT2 inactivation remains unknown. Here, we demonstrate that SHMT2 supports the proliferation of bladder cancer (BC) cells by maintaining redox homeostasis. SHMT2 knockout decreased the pools of purine and one-carbon units and delayed cell cycle progression in a manner that was rescued by formate, demonstrating that SHMT2-mediated one-carbon units are essential for BC cell proliferation. SHMT2 deficiency promoted the accumulation of intracellular reactive oxygen species (ROS) by decreasing the NADH/NAD+, NADPH/NADP+, and GSH/GSSG ratios, leading to a loss in mitochondrial membrane potential, release of cytochrome c, translocation of Bcl-2 family protein and activation of caspase-3. Notably, blocking ROS production with the one-carbon donor formate and the ROS scavenger N-acetyl-cysteine (NAC) effectively rescued SHMT2 deficiency-induced cell apoptosis via the intrinsic signaling pathway. Treatment with the SHMT inhibitor SHIN1 resulted in a significant inhibitory effect on cell proliferation and induced cell apoptosis. Formate and NAC rescued SHIN1-induced cell apoptosis. Our findings reveal an important mechanism by which the loss of SHMT2 triggers ROS-dependent, mitochondrial-mediated apoptosis, which gives insight into the link between serine metabolism and cell apoptosis and provides a promising target for BC treatment and drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SHMT2 expression is upregulated in bladder cancer.
Fig. 2: SHMT2 promotes the proliferation, migration, and invasion of BC cells.
Fig. 3: SHMT2 is essential to one-carbon units for cell cycle progression.
Fig. 4: SHMT2 deficiency leads to increased ROS levels and mitochondrial apoptosis.
Fig. 5: SHMT2 deficiency induces ROS-dependent mitochondrial-mediated apoptosis.
Fig. 6: SHIN1 inhibits the proliferation, migration, and invasion of BC cells.
Fig. 7: SHIN1 induces ROS-dependent cell apoptosis via the intrinsic signaling pathway.

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this article and its supplementary information files.

References

  1. Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer. 2018;1870:51–66.

    Article  CAS  PubMed  Google Scholar 

  2. Tsun ZY, Possemato R. Amino acid management in cancer. Semin Cell Dev Biol. 2015;43:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 2016;73:377–92.

    Article  CAS  PubMed  Google Scholar 

  4. Vettore L, Westbrook RL, Tennant DA. New aspects of amino acid metabolism in cancer. Br J Cancer. 2020;122:150–6.

    Article  CAS  PubMed  Google Scholar 

  5. Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol. 2018;20:775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newman AC, Maddocks ODK. Serine and functional metabolites in cancer. Trends Cell Biol. 2017;27:645–57.

    Article  CAS  PubMed  Google Scholar 

  8. Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248–58.

    Article  CAS  PubMed  Google Scholar 

  9. Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 2011;125:421–30.

    Article  CAS  PubMed  Google Scholar 

  10. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet. 2011;43:869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jing Z, Heng W, Xia L, Ning W, Yafei Q, Yao Z, et al. Downregulation of phosphoglycerate dehydrogenase inhibits proliferation and enhances cisplatin sensitivity in cervical adenocarcinoma cells by regulating Bcl-2 and caspase-3. Cancer Biol Ther. 2015;16:541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Wu J, Cai J, He Z, Yuan J, Zhu X, et al. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells. Int J Cancer. 2015;136:E39–50.

    Article  CAS  PubMed  Google Scholar 

  13. Mullarky E, Lucki NC, Beheshti Zavareh R, Anglin JL, Gomes AP, Nicolay BN, et al. Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci USA. 2016;113:1778–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJ, et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol. 2016;12:452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun L, Song L, Wan Q, Wu G, Li X, Wang Y, et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 2015;25:429–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Liberti MV, Liu P, Deng X, Liu Y, Locasale JW, et al. Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem Biol. 2017;24:55–65.

    Article  CAS  PubMed  Google Scholar 

  17. Garrow TA, Brenner AA, Whitehead VM, Chen XN, Duncan RG, Korenberg JR, et al. Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J Biol Chem. 1993;268:11910–6.

    Article  CAS  PubMed  Google Scholar 

  18. Stover P, Schirch V. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem. 1990;265:14227–33.

    Article  CAS  PubMed  Google Scholar 

  19. Renwick SB, Snell K, Baumann U. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure. 1998;6:1105–16.

    Article  CAS  PubMed  Google Scholar 

  20. Newman AC, Maddocks ODK. One-carbon metabolism in cancer. Br J Cancer. 2017;116:1499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nikiforov MA, Chandriani S, O’Connell B, Petrenko O, Kotenko I, Beavis A, et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol. 2002;22:5793–5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nilsson LM, Forshell TZ, Rimpi S, Kreutzer C, Pretsch W, Bornkamm GW, et al. Mouse genetics suggests cell-context dependency for Myc-regulated metabolic enzymes during tumorigenesis. PLoS Genet. 2012;8:e1002573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paone A, Marani M, Fiascarelli A, Rinaldo S, Giardina G, Contestabile R, et al. SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis. 2014;5:e1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee GY, Haverty PM, Li L, Kljavin NM, Bourgon R, Lee J, et al. Comparative oncogenomics identifies PSMB4 and SHMT2 as potential cancer driver genes. Cancer Res. 2014;74:3114–26.

    Article  CAS  PubMed  Google Scholar 

  25. Kim D, Fiske BP, Birsoy K, Freinkman E, Kami K, Possemato RL, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature. 2015;520:363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Chen Z, Xue D, Zhang Q, Liu X, Luh F, et al. Prognostic and therapeutic value of mitochondrial serine hydroxyl-methyltransferase 2 as a breast cancer biomarker. Oncol Rep. 2016;36:2489–2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woo CC, Chen WC, Teo XQ, Radda GK, Lee PT. Downregulating serine hydroxymethyltransferase 2 (SHMT2) suppresses tumorigenesis in human hepatocellular carcinoma. Oncotarget. 2016;7:53005–17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ducker GS, Ghergurovich JM, Mainolfi N, Suri V, Jeong SK, Hsin-Jung Li S, et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2017;114:11404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, et al. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 2018;78:372–86.

    Article  PubMed  Google Scholar 

  30. Wei Z, Song J, Wang G, Cui X, Zheng J, Tang Y, et al. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat Commun. 2018;9:4468.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science. 2012;336:1040–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marani M, Paone A, Fiascarelli A, Macone A, Gargano M, Rinaldo S, et al. A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells. Oncotarget. 2016;7:4570–83.

    Article  PubMed  Google Scholar 

  33. Yang L, Garcia Canaveras JC, Chen Z, Wang L, Liang L, Jang C, et al. Serine catabolism feeds NADH when respiration is impaired. Cell Metab. 2020;31:809–821 e806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bruckheimer EM, Cho SH, Sarkiss M, Herrmann J, McDonnell TJ. The Bcl-2 gene family and apoptosis. Adv Biochem Eng Biotechnol. 1998;62:75–105.

    CAS  PubMed  Google Scholar 

  35. Li L, Wei Y, To C, Zhu CQ, Tong J, Pham NA, et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat Commun. 2014;5:5469.

    Article  CAS  PubMed  Google Scholar 

  36. Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 2016;24:640–1.

    Article  CAS  PubMed  Google Scholar 

  37. Maddocks OD, Labuschagne CF, Adams PD, Vousden KH. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell. 2016;61:210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tong J, Krieger JR, Taylor P, Bagshaw R, Kang J, Jeedigunta S, et al. Cancer proteome and metabolite changes linked to SHMT2. PLoS ONE. 2020;15:e0237981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Du L, Yang F, Fang H, Sun H, Chen Y, Xu Y, et al. AICAr suppresses cell proliferation by inducing NTP and dNTP pool imbalances in acute lymphoblastic leukemia cells. FASEB J. 2019;33:4525–37.

    Article  CAS  PubMed  Google Scholar 

  40. Su CC, Hsieh KL, Liu PL, Yeh HC, Huang SP, Fang SH, et al. AICAR induces apoptosis and inhibits migration and invasion in prostate cancer cells through an AMPK/mTOR-dependent pathway. Int J Mol Sci. 2019;20:1647.

  41. Minton DR, Nam M, McLaughlin DJ, Shin J, Bayraktar EC, Alvarez SW, et al. Serine catabolism by SHMT2 is required for proper mitochondrial translation initiation and maintenance of formylmethionyl-tRNAs. Mol Cell. 2018;69:610–621 e615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morscher RJ, Ducker GS, Li SH, Mayer JA, Gitai Z, Sperl W, et al. Mitochondrial translation requires folate-dependent tRNA methylation. Nature. 2018;554:128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye J, Fan J, Venneti S, Wan YW, Pawel BR, Zhang J, et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 2014;4:1406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kiraz Y, Adan A, Kartal Yandim M, Baran Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 2016;37:8471–86.

    Article  CAS  PubMed  Google Scholar 

  45. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87:1157–80.

    Article  CAS  PubMed  Google Scholar 

  46. Yang H, Xie Y, Yang D, Ren D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget. 2017;8:25310–22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tian J, Mo J, Xu L, Zhang R, Qiao Y, Liu B, et al. Scoulerine promotes cell viability reduction and apoptosis by activating ROS-dependent endoplasmic reticulum stress in colorectal cancer cells. Chem Biol Interact. 2020;327:109184.

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Ueta E, Kimura T, Yamamoto T, Osaki T. Reactive oxygen species (ROS) control the expression of Bcl-2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004;95:644–50.

    Article  CAS  PubMed  Google Scholar 

  49. Luanpitpong S, Chanvorachote P, Stehlik C, Tse W, Callery PS, Wang L, et al. Regulation of apoptosis by Bcl-2 cysteine oxidation in human lung epithelial cells. Mol Biol Cell. 2013;24:858–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 2004;23:2134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, et al. Metabolic phenotype of bladder cancer. Cancer Treat Rev. 2016;45:46–57.

    Article  CAS  PubMed  Google Scholar 

  52. Yang Z, He L, Lin K, Zhang Y, Deng A, Liang Y, et al. The KMT1A-GATA3-STAT3 circuit is a novel self-renewal signaling of human bladder cancer stem cells. Clin Cancer Res. 2017;23:6673–85.

    Article  CAS  PubMed  Google Scholar 

  53. Paiardini A, Tramonti A, Schirch D, Guiducci G, di Salvo ML, Fiascarelli A, et al. Differential 3-bromopyruvate inhibition of cytosolic and mitochondrial human serine hydroxymethyltransferase isoforms, key enzymes in cancer metabolic reprogramming. Biochim Biophys Acta. 2016;1864:1506–17.

    Article  CAS  PubMed  Google Scholar 

  54. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Tong Zhao for the flow cytometry analysis and Shuo Wang for the critical reading of the manuscript and recommendations. This work was supported by grants from the Innovation Academy for Strategic Priority Research Program of the Chinese Academy of Sciences (XDA17010503), the National Natural Science Foundation of China (32071460), and the Innovation Academy for Green Manufacture, Chinese Academy of Sciences (IAGM-2019-A02).

Author information

Authors and Affiliations

Authors

Contributions

YZ and ZL designed and conducted the experiments; XLW aided for metabonomic data analysis and Figure drawing; HJ and HHX aided for experiment coordination; YZ analyzed the data and wrote the manuscript; TYW conceived of and supervised the project, analyzed data, made Figures, and revised the paper; and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Tingyi Wen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, Z., Wang, X. et al. SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells. Cancer Gene Ther 29, 1514–1527 (2022). https://doi.org/10.1038/s41417-022-00470-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-022-00470-5

This article is cited by

Search

Quick links